



# Today's Agenda

- What is effluent?
- What is soil?
- How does the soil treat wastewater?
  - Physical
  - Chemical
  - Biological
  - Environmental





What is Effluent?

Water and contaminants

**Pathogens** 

**Bacteria Protozoa**  Viruses

**Helminths** 

Fungi

Suspended Solids (TSS)

**Total** 

**Biochemical** Oxygen **Demand (BOD)** 

**Chemicals** 





# Why do we need to treat contaminants?

#### **Pathogens**

Disease causing organisms, including:

- Bacterium
- Viruses
- Helminths
- Protozoa
- Fungus



Can contaminate potable, ground and surface waters
Can cause illness or death in humans and animals



# Why do we need to treat contaminants?

#### **Nutrients**

Nitrogen (Ammonia)

- Easily converted to nitrate and transported with water
- Nitrates in drinking water can cause methemoglobinemia (blue baby syndrome)





Phosphorus (phosphate)

- Easily transported with water
- Contributes to algal blooms and reduction of oxygen levels in surface water habitats.

# Why do we need to treat contaminants?

#### **Chemicals**

- Medications
- Cleaners
- Can be carried to surface or drinking waters

#### **Organic Material**

- Suspended Solids
- Can plug soil pores





## What is Soil?

- 50% Pore Space
  - Air
  - Water

- 50% Solids
  - Minerals
  - Organic Matter





# What do we want soil to do?

- Move water
  - Fast enough....
     to get clean water away so
     that water entering from
     home use has room to filter through the soil



- Effectively treat contaminants
  - Effluent must travel through small pores
  - Effluent must come into contact with soil particles



# What factors affect soils ability to treat wastewater?

### Physical

- Soil structure
- Soil texture

#### Chemical

- Surface Area
- Chemical properties of soil particles

- Mechanical Filtration / Straining
- Sedimentation
- > Evapotranspiration
- > Adsorption/Adhesion
- ➤ Precipitation



# What factors affect soils ability to treat wastewater?

## Biological

Soil microbes

- ➤ Uptake
- **≻**Incorporation
- **→** Predation
- **→** Transformations

#### Environmental

Condition of soil

- ➤Oxygen level
- **≻**Temperature
- ➤ Moisture content





# Soil Structure and Porosity

- Structure
  - Granular
  - Angular Blocky
  - Subangular Blocky
  - Prismatic
  - Columnar
  - Platy
- Structureless
- Single Grain
- Massive



SOIL LOADING RATE = GALLONS /DAY / FT<sup>2</sup>



# Water Movement



Majority of flow through macropores under saturated conditions

Majority of flow through intrapedal voids under unsaturated conditions



# Soil Chemistry

What is needed for chemical reactions?

- 1. Surface Area
- 2. Appropriate conditions
- 3. Reactants







# Surface Area increases as volume increases



| 1 |   |
|---|---|
|   | - |

| Total surface area (height × width × number of sides × number of boxes) | 1X1X6X1=<br>6 | 5X5X6X1=<br>150 |
|-------------------------------------------------------------------------|---------------|-----------------|
| Total volume<br>(height × width × length<br>× number of boxes)          | 1X1X1X1=<br>1 | 5X5X5X1=<br>125 |
| Surface-to-volume ratio (surface area / volume)                         | 6/1=          | 150/125=<br>1.2 |

## Soil Texture and Surface Area





**Slightly positively** charged water molecules form thin layer around the soil particles in unsaturated conditions

**Chemical Properties of Soil** 



cations and positively charged bacteria, viruses and organic compounds adhere to the soil particles

**ADHESION** 





- 1. Slows down the movement of water
- Physically filters large particles and chemicals which reduces BOD and TSS
- 3. Harbors beneficial microorganisms



# Why do we want to slow down water movement?





Aerobic bacteria need oxygen

**ADHESION** 



# **ADHESION**



### **Soil Microbes**

- Aerobic
  - They need oxygen
- Naturally present in the soil

## **Effluent Pathogens**

- Primarily anaerobic
  - They thrive in environments void of oxygen
- Abundant in effluent
- Can live in aerobic environments

## Promoting aerobic bacteria in the SAF

- Provide aerobic environment
  - Provide unsaturated conditions
  - Allow air movement
- Provide food source
- Provide a large surface area on which these bacteria live

### What is Soil?

- 50% Pore Space
  - Air
  - Water

- 50% Solids
  - Minerals
  - Organic Matter





# The soil is alive!



1 million to 1 billion microscopic organisms





## Where do soil microbes live?









## **Environmental Factors**

 Temperature – Low temps reduce biological efficiency and treatment performance.



### **Environmental Factors**

- Temperature Low temps reduce biological efficiency and treatment performance.
- Oxygen Levels Low levels reduce the aerobic bacteria living the in the soil
  - Saturated conditions
  - Deep soil absorption field
  - Lack of oxygen supply due to compaction of soil cover
- Soil moisture Ground water or hydraulic load
  - Less oxygen in soil
  - Promotes water movement through large voids, not by capillary action

## What kind of soil is best?

- Sand Good for moving water
  - Large particles / relatively small surface area
  - Fast water movement / short detention time
  - Air pockets with large voids
     VERY COARSE SAND CAN LEAD TO
     INADEQUATE TREATMENT
- Clayey soil Good for treating pathogens
  - Small particles / relatively large surface area
  - Slow water movement / long detention time
  - Small air pockets with small voids
    TIGHT CLAYS CAN LEAD TO VERY SLOW WATER
    MOVEMENT CAUSING PONDING AND ANAEROBIC
    CONDITIONS

# Summary

- Soil structure and texture
  - Filters wastewater
  - Provides surface area for biochemical reactions and adhesion
- Filtration of wastewater causes biomat formation
  - Additional filtration
  - Harbors beneficial microorganisms
- Aerobic bacteria
  - need oxygen
  - remove or inactivate pathogens in wastewater
- Unsaturated flow
  - Detention time
  - Aerobic conditions