Department of Local Government Finance

Cost Approach Problem and Answer Packet

2024 Level II Tutorials

Problem \#1

- A commercial building contains a total of 5,200 square feet. Of this total, 3,900 square feet of the area has a wall height of 16 feet. The remaining 1,300 square feet of the area has a wall height of 14 feet. What is the average wall height for this structure?

Problem \#1 Answer

- 3,900 divided by 5,200 = 75\%
- 1,300 divided by 5,200 = 25\%
- 16 ' x $.75=12$ '
- $14^{\prime} \times .25=3.5^{\prime}$
- $12^{\prime}+3.5^{\prime}=15.5^{\prime}$ rounded to 16 ft .

Problem \#2

- A commercial building measures 200 feet by 500 feet. What is the PAR of this structure?

Problem \#2 Answer

- $200+200+500+500=1,400$ (perimeter)
- $200 \times 500=100,000$
- 1,400 divided by $100,000=.014$
- $0.014 \times 100=1.4$ or a PAR of 1

Problem \#3

- A structure has 2,500 square feet of area of which 1,500 square feet is general office and 1,000 square feet is utility storage area. The walls of the structure are Type 1. The building measures 100 feet by 25 feet.
- Figure the adjusted base rate for this structure using the GCM schedule.

Problem \#3 Answer

- Step 1 - Figure the PAR
- $100+100+25+25=250$
- $100 \times 25=2,500$
- 250 divided by $2,500=0.10 \times 100=10$

Problem \#3 Answer

- Step 2 - Percentage of each use
- 1,500 divided by $2,500=60 \%$ (General Office)
- 1,000 divided by 2,500 $=40 \%$ (Utility Storage)

Problem \#3 Answer

- Step 3 - Go to appropriate Schedule in Appendix G and select the correct base rates
- General office - \$127.59
- Utility storage - \$ 75.83

Problem \#3 Answer

- Step 4 - Figure adjusted rates for each use
- $\$ 127.59 \times .60=\$ 76.55$
- $\$ 75.83 x .40=\$ 30.33$

Problem \#3 Answer

- Figure new adjusted base rate by adding the individual rates together
- $\$ 76.55+\$ 30.33=\$ 106.88$

Problem \#4

- A fire-resistant building with exterior walls of brick measures 100 ' x 180'. Twenty-five percent of the building is used as industrial office space, and the remainder of the building is used as light warehousing. The office space has a wall height of 12 feet and the warehouse space has a wall height of 18 feet.
- What is the average wall height?
- What is the adjusted base rate?

Problem \#4 Answer

- Area: $100 \times 180=18,000$ sq. ft
- Perimeter: $100+100+180+180=560$ linear feet
- $560 / 18,000=.03 \times 100=$ PAR 3
- $12^{\prime} \times 25 \%=3$ '
- $18^{\prime} \times 75 \%=13.50$ '

Problem \#4 Answer

- $3^{\prime}+13.50$ ' $=16.5^{\prime}$ rounded to 17 ' so the average wall height is 17 feet.
- Since the office walls are 12 feet, we need to make a positive 5foot adjustment on it.
- Since the warehouse walls are 18 feet, we need to make a negative 1 -foot adjustment on it.

Problem \#4 Answer

- Industrial Office: base rate is $\$ 77.07$, adjustment is 5 ' $\times \$ 1.51$ for a total of \$84.62
- Light Warehouse: base rate is $\$ 48.48$, minus adjustment of $1^{\prime} \mathrm{x}$ $\$.86$ for a total of $\$ 47.62$

Problem \#4 Answer

- $\$ 84.62 \times 25 \%=\$ 21.16$
- $\$ 47.62 \times 75 \%=\$ 35.72$
- $\$ 21.16+\$ 35.72$ = adjusted rate of $\$ 56.88$ for the building.

Problem \#4 Answer

- When you are using an average wall height, you must take into consideration the original wall heights of each part of the building and make wall height adjustments as necessary to the base rate.

Problem \#5

- A structure has 3,000 square feet of area, of which 1,800 square feet is fire resistant. The remainder of the building is constructed with fireproof steel. The PAR is 8 . The exterior walls are Type 1. The building is used as a bank. What is the amount of adjustment, per square foot, necessary to account for the fireproof steel framing?

Problem \#5 Answer

- 1,200 square feet $/ 3,000$ square feet $=40 \%$
- Fireproof steel frame adjustment: $\$ 9.28 \times 40 \%=\$ 3.71$

Problem \#6

- A parking lot of 20,000 square feet is paved with 2 inches of asphalt over an 8-inch base. It is located in Daviess County and is in average condition with a quality grade of C-1.
- It has 200 linear feet of metal guardrail on one side, which is also in average condition, with a quality grade of C . Both were installed in 1992.
- What is the total true tax improvement value?

Problem \#6 Answer

- Since the square footage of the parking lot is 20,000 , our base rate is $\$ 2.57$, and then we add $\$ 0.40$ for the 3 " of base, so we start with a rate of $\$ 2.97$. However, the lot is a C-1 grade, so we need to account for that.
- $\$ 2.97 \times 0.95=\$ 2.82$ for our base rate
- Now we need to account for the location multiplier, 0.91, so $\$ 2.82$ x $0.91=\$ 2.57$ (our adjusted rate)

Problem \#6 Answer

- We take $\$ 2.57 \times 20,000=\$ 51,400$ for the replacement cost.
- Next is the depreciation. The lot is 32 years old and in average condition, so the depreciation percentage is 80%.
- $\$ 51,400 \times .80=\$ 41,120$ and $\$ 51,400-\$ 41,120=\$ 10,280$ remainder value
- Or \$51,400 x . $20=\$ 10,280$ remainder value

Problem \#6 Answer

- Taking the remainder value to the nearest $\$ 100$, our asphalt has a true tax value of $\$ 10,300$.
- The guardrail has a base rate of $\$ 23.76$, and since it is a C grade, we do not have to make any grade adjustment.
- We do need to make the adjustment for the location. Taking the $0.91 \times \$ 23.76$, gives you an adjusted rate of $\$ 21.62$.
- Then just take the 200 linear feet $x \$ 21.62=\$ 4,320$.

Problem \#6 Answer

- Looking up the depreciation for the guard rail, it is also 80%, so $\$ 4,320 \times .80$ and subtracting (or . 20 and not subtracting, whichever is easier for you) gives us a remainder value for the guard rail of $\$ 860$, rounded to $\$ 900$ for the true tax value.
- Adding our paving to the guardrail amount, we should have a total true tax improvement value of \$11,200.

Class Problem \#7

- This is a fast-food restaurant built on a slab in Carroll County in 2004. It contains 1,902 square feet and has a perimeter of 202 linear feet. It also has a commercial heating/air conditioning package that heats and cools the entire 1,902 square feet. It is a quality grade of C and is in average condition. The exterior walls are brick.
- There is 18,000 square feet of asphalt paving on a 2 " over 8 " base. It was put down at the same time as the construction date of the building. It is a quality grade of $C+1$ and is in average condition.
- What is the total improvement value of this property?

Practice Problem \#1

- The Walgreen company owns and operates a drug store which was constructed in Starke County. The building has 15,400 square feet with a perimeter of 450 feet. The drug store was built in 2012. The building is fire resistant construction and is wall type \#1. The interior finish meets the criteria of the GCM General Retail model. There are a total of five commercial plumbing fixtures in the building. The building is totally sprinkled and has an average quality attached commercial canopy of 900 square feet. It has been determined the building is in average condition and is classified as a C+1 quality grade. The drug store is frame constructed.
- There is a 28,000 square feet asphalt paved parking area surrounding the building. It was constructed when the building was built and the asphalt is 2 " on 5 " base. The asphalt paving is C quality grade and is in average condition.
- What is the total true tax value of the improvements?

