

atotEnvironmentalManagematic State of indiana

October 27, 2021

Chief, Environmental Enforcement Section Environment and Natural Resources Division U.S. Department of Justice Box 7611, Ben Franklin Station Washington, DC 20044-7611 Re: DOJ No. 90-5-2-1-08555/1

Compliance Tracker Air Enforcement and Compliance Assurance Branch U.S. Environmental Protection Agency – Region 5 77 West Jackson Blvd. AE-18J Chicago, IL 60604-3590

Including an electronic copy to: <u>R5airenforcement@epa.gov</u>

Phil Perry Indiana Department of Environmental Management Chief, Air Compliance and Enforcement Branch 100 North Senate Avenue MC-61-53, IGCN 1003 Indianapolis, IN 46204-2251



# Cokenergy, LLC

3210 Watling Street Mail Code 2-991 East Chicago, Indiana 46312

Air Enforcement Division Director U.S. Environmental Protection Agency Office of Civil Enforcement Air Enforcement Division U.S. Environmental Protection Agency 1200 Pennsylvania Ave, NW Mail Code: 2242A Washington, DC 20460

Susan Tennenbaum U.S. Environmental Protection Agency Region 5 C-14J 77 West Jackson Blvd Chicago, IL 60640

Including an electronic copy to: tennenbaum.susan@epa.gov

Elizabeth A. Zlatos Indiana Department of Environmental Management Office of Legal Counsel 100 North Senate Avenue MC-60-01, IGCN 1307 Indianapolis, IN 46204-2251

Including an electronic copy to: bzlatos@idem.in.gov

Subject: Consent Decree, United States, et al. v. Indiana Harbor Coke Company, et al. Cokenergy, LLC (Part 70 Permit No. T089-41033-00383) Semi-Annual Progress Report – April 1, 2021 through September 30, 2021

To Whom It May Concern:

In accordance with Section VIII (Reporting Requirements), Paragraph 51. of the consent decree (18-cv-35), Cokenergy, LLC has prepared a semi-annual progress report detailing activities from April 1, 2021 until September 30, 2021. This report provides an update on Cokenergy's activities during the reporting period. Indiana Harbor Coke Company (IHCC) activities will be provided under a separate cover prepared and submitted by IHCC.

Cokenergy submitted our report to support our termination and our Certification of Completion to the government on August 18, 2021.

Paragraph 51.a. requires details on work performed and progress made towards implementing the requirements of Section IV (Compliance Requirements), including completion of any milestones. The following paragraphs provide an update on our compliance requirements.

### **Bypass Venting**

**Paragraph 14.a** – <u>Annual Bypass Venting Limit</u> - From January 1, 2017, through December 31, 2019, a maximum of 12% of the Coke Oven waste gases leaving the common tunnel shall be allowed to be vented to the atmosphere through the Bypass Vent Stacks, as determined on an annual basis.

• Bypass venting for the period of January 1, 2019 – December 31, 2019 was well within the venting limit of 12% at 5.26%. Venting for 2017 and 2018 was also well within the 12% venting limit at 7.72% and 6.00% respectively.

**Paragraph 14.b** – <u>Annual Bypass Venting Limit</u> – Beginning January 1, 2020, a maximum of 13% of the Coke Oven waste gases leaving the common tunnel shall be allowed to be vented to the atmosphere through the Bypass Vent Stack, as determined on an annual basis.

• Bypass venting from January 1, 2021 through September 30, 2021 was 3.33%

**Paragraph 14.c** – <u>Exception to Paragraph 14.b.</u> – Beginning on January 1, 2020, if Cokenergy undertakes HRSG Retubing, then in that calendar year a maximum of 14% of the Coke Oven waste gases leaving the common tunnel shall be allowed to be vented to the atmosphere through the Bypass Vent Stack, as determined on an annual basis, provided HRSG Retubing accounts for at least 3.25% annual Bypass Venting.

• No retubing events have occurred during 2021 through the date of this report.

**Paragraph 15**. – <u>Daily Bypass Venting Limit</u> – A Maximum of 19% of the Coke Oven waste gases leaving the common tunnel shall be allowed to be vented to the atmosphere through the Bypass Vent Stacks on a twenty-four (24) hour average.

• During the reporting period of April 1, 2021 through September 30, 2021 there were no incidents of exceedance of the Daily Bypass Venting Limit.

# **Paragraph 16.** – <u>SO2 Daily Limit</u> – Defendants shall limit SO2 emissions from the Main Stack and Bypass Vent Stacks to 1,656 lbs/hr for a twenty-four (24) hour average.

• During the reporting period of April 1, 2021 through September 30, 2021 there were no incidents of exceedance of the SO2 Daily Limit.

### Paragraph 17. - Emissions Minimization

• During the reporting period of April 1, 2021 through September 30, 2021 there were no incidents of exceedance of the Daily Bypass Venting Limit, therefore it was not necessary to implement any Emissions Minimization efforts. (Paragraph 51.f.)

### Paragraph 18. - Bypass Venting Incident Root Cause Failure Analysis

• During the reporting period of April 1, 2021 through September 30, 2021 there were no incidents of exceedance of the Daily Bypass Venting Limit, therefore there were no Bypass Venting Incident RCFA completed. (Paragraph 51.g. and 51.h.)

### **Enhanced Monitoring**

### Paragraph 19. - Permanent Flow Monitor

• Milestone complete, see Cokenergy Semiannual report dated April 29, 2019 for details.

### Paragraph 21. – ETS Updates

• Milestone complete, see Cokenergy Semiannual report dated April 29, 2019 for details.

### Paragraph 22. – Bypass Vent Stack and Main Stack Testing

• See Cokenergy Semiannual Report Dated April 27, 2020 for details.

### Paragraph 22a. – *Lead Testing*

• Milestone complete, Cokenergy completed the first lead stack testing on December 5 and 6, 2019. See Cokenergy Semiannual Report Dated April 27, 2020 for details. Cokenergy completed the second lead stack test on June 9, 2021. The results were submitted to the government on July 19, 2021 and showed an average lead emission rate of 0.00202 pound per hour. (Paragraph 51.d.). A copy of the second lead stack test report is attached.

### Paragraph 22b. – *VOC Testing*

• Milestone Complete, See Cokenergy Semiannual Report Dated April 27, 2020 for details. (Paragraph 51.d.).

### **Preventive Maintenance and Operation Plans**

### Paragraphs 23 and 23.b. - Cokenergy PMO Plan for HRSGs and FGD

• Milestone complete, see Cokenergy Semiannual report dated April 29, 2019 for details. There have been no revisions or modifications of the PMO plan during the current reporting period.

### Paragraph 23.c. – Compliance Assurance

• The CAP is addressed in Section 9.0 of Cokenergy's PMO Plan. IHCC has not reported production levels in excess of rates included in 23. c. i. during the reporting period of April 1, 2021 – September 30, 2021. (Paragraph 51.j.).

**Paragraph 23.d**. – Defendants shall comply with the PMO Plans at all times, including periods of startup, shutdown, and malfunction of the HRSG and FGD.

• Cokenergy has fully implemented our PMO plan and is following the requirements of the PMO plan.

### **Mitigation Measures**

### Paragraph 24 – <u>Dual SDA Operation</u>

• The emissions of SO2 for the period of January 1, 2021 through September 30, 2021 are approximately 4,511 tons, which projects to be less than 6,165 tons.

### <u>Permits</u>

### Paragraph 26. - Permits

• Milestone complete, see Cokenergy Semiannual report dated October 29, 2019 for details. (Paragraph 51.k.).

### Paragraph 27.a. - Applications for Permits Incorporating the Requirements in Section IV

• Milestone complete, see Cokenergy Semiannual report dated April 29, 2019 for details. (Paragraph 51.k.).

### **Paragraph 27.b.** – <u>Application to seek a site-specific revision to the Indiana State Implementation Plan ("SIP")</u> at 326 IAC 7-4.1-7 and 326 IAC 7-4.1-8.

• Milestone complete- Cokenergy formally submitted our request to modify the SIP on December 18, 2018 within the ninety (90) day requirement specified in the CD. IDEM developed the draft rule LSA Document #19-388 which was posted on August 14, 2019 for public comment. The initial public hearing was held on November 13, 2019. There were no public comments during the comment period or initial public hearing. The final public hearing was completed on January 8, 2020. The rule was approved and published in the Indiana Register on April 25, 2020. (Paragraph 51.k.).

### Paragraph 28. – Permitting Authority Cooperation

• Cokenergy has actively worked with IDEM throughout the permitting process.

### Paragraph 29. - Submittal of Permit Applications to EPA

• Cokenergy has provided copies of our complete permit application to EPA on the dates specified above in accordance with the requirements specified in Section XV (Notices) of the CD.

Paragraph 51.b. requests details on any significant modifications to previously submitted design specifications of any pollution control system, or to monitoring equipment, required to comply with the Compliance Requirements. Cokenergy has no modifications to report. Dual SDA operation is our normal operating mode, and the Permanent Flow Monitor has been fully integrated into our Continuous Emissions Monitoring System (CEMS) and the Emissions Tracking System (ETS).

Cokenergy did not encounter any problems or anticipate any problems in complying with the Compliance Requirements (Paragraph 51.c.).

Paragraph 51.d. requests a summary of the emissions monitoring and testing data collected to demonstrate compliance with any requirement of this CD. Cokenergy completed our annual Relative Accuracy Test Audit (RATA) on June 8, 2021 on the sulfur dioxide continuous emissions monitoring system. The relative accuracy was within applicable limits of the Performance Specifications of 40 CFR 60 Appendix B at 6.85%. A copy of the RATA report is attached.

Paragraph 51.i. requests any updated PMO Plan required by Paragraph 23. There have been no updates or revisions to the PMO plan during this reporting period.

There is no noncompliance with the Section VII SEP requirements to report per Paragraph 51.1. Cokenergy received a request for extension from our contractor Elevate Energy on July 15, 2020. On July 21, 2020 Cokenergy formally requested a six-month extension through April 30, 2021 in accordance with paragraph 42 of the consent decree. COVID-19 related stay at home orders impacted the scheduling of the final lead abatement projects that were planned for the spring and summer of 2020. Abatement work did restart in August 2020. DOJ filed a request to approve, among other things, this extension on October 13, 2020 as a modification to the CD. The SEP Project was successfully completed prior to the extended deadline of April 30, 2021. Cokenergy submitted the final report for the SEP on December 16, 2020. Cokenergy was notified by the government on January 21, 2021 that the Lead Hazard Reduction SEP project was satisfactorily performed. Milestone complete.

Per Paragraph 51.m. there have been no failures to comply with the reporting requirements in Paragraphs 51, through 55.

Per Paragraph 51.n. Cokenergy has provided copies of the following documents

- Quarterly Deviation and Compliance Monitoring Report for the 2<sup>nd</sup> quarter of 2021
- Quarterly Deviation and Compliance Monitoring Report for the 3<sup>rd</sup> quarter of 2021

Pursuant to Paragraph 51.o. the following table is a summary of Lightning Stand-Downs during the April 1, 2021 through September 30, 2021 reporting period.

|                 |                                    |                 |          | Compliance response<br>impacted due to |
|-----------------|------------------------------------|-----------------|----------|----------------------------------------|
| Start Date/Time | Lightning Warning Detail           | End Date/Time   | Duration | lightning stand down                   |
| 4/5/2021 11:14  | Alert: Ltg Warning (west 7.5)      | 4/5/2021 12:14  | 1:00:00  | None                                   |
| 4/28/2021 15:11 | Alert: Ltg Warning (north 5.1)     | 4/28/2021 16:19 | 1:08:00  | None                                   |
| 5/28/2021 16:24 | Alert: Ltg Warning (west 8.2)      | 5/28/2021 18:12 | 1:48:00  | None                                   |
| 6/12/2021 14:25 | Alert: Ltg Warning (northwest 8.1) | 6/12/2021 15:58 | 1:33:00  | None                                   |
| 6/12/2021 16:26 | Alert: Ltg Warning (west 7.2)      | 6/12/2021 17:43 | 1:17:00  | None                                   |
| 6/18/2021 5:05  | Alert: Ltg Warning (northwest 9.9) | 6/18/2021 6:45  | 1:40:00  | None                                   |
| 6/18/2021 8:15  | Alert: Ltg Warning (northwest 9.0) | 6/18/2021 8:48  | 0:33:00  | None                                   |
| 6/19/2021 18:28 | Alert: Ltg Warning (south 2.2)     | 6/19/2021 19:27 | 0:59:00  | None                                   |
| 6/20/2021 23:03 | Alert: Ltg Warning (southeast 6.0) | 6/20/2021 23:33 | 0:30:00  | None                                   |
| 6/20/2021 23:36 | Alert: Ltg Warning (west 9.2)      | 6/21/2021 1:20  | 1:44:00  | None                                   |
| 6/24/2021 11:22 | Alert: Ltg Warning (west 7.1)      | 6/24/2021 12:54 | 1:32:00  | None                                   |

# Cokenergy, LLC Semi-Annual Progress Report October 27, 2021 Page 6 of 8

|                 |                                     |                 |          | Compliance response  |
|-----------------|-------------------------------------|-----------------|----------|----------------------|
| Start Data/Timo | Lightning Warning Detail            | End Date/Time   | Duration | lightning stand down |
| 6/24/2021 13:04 | Alert: I tg Warning (north 6.4)     | 6/24/2021 13:50 | 0:46:00  | None                 |
| 6/24/2021 15:04 | Alert: Itg Warning (southwest 10.0) | 6/24/2021 16:21 | 1:17:00  | None                 |
| 6/25/2021 1:20  | Alert: I to Warning (south 8.1)     | 6/25/2021 2:44  | 1:24:00  | None                 |
| 6/25/2021 4.11  | Alert: Ltg Warning (southwest 7.7)  | 6/25/2021 5:55  | 1:44:00  | None                 |
| 6/25/2021 1:20  | Alert: Ltg Warning (south 8.1)      | 6/25/2021 2:44  | 1:24:00  | None                 |
| 6/25/2021 4:11  | Alert: Ltg Warning (southwest 7.7)  | 6/25/2021 5:55  | 1:44:00  | None                 |
| 6/26/2021 6:02  | Alert: Ltg Warning (southwest 8.3)  | 6/26/2021 6:44  | 0:42:00  | None                 |
| 6/26/2021 12:31 | Alert: Ltg Warning (southwest 8.3)  | 6/26/2021 14:28 | 1:57:00  | None                 |
| 6/26/2021 14:39 | Alert: Ltg Warning (west 9.6)       | 6/26/2021 15:15 | 0:36:00  | None                 |
| 6/26/2021 17:03 | Alert: Ltg Warning (south 9.6)      | 6/26/2021 18:33 | 1:30:00  | None                 |
| 6/28/2021 2:37  | Alert: Ltg Warning (south 8.9)      | 6/28/2021 3:53  | 1:16:00  | None                 |
| 6/28/2021 15:04 | Alert: Ltg Warning (west 9.6)       | 6/28/2021 17:42 | 2:38:00  | None                 |
| 6/29/2021 7:08  | Alert: Ltg Warning (northwest 9.2)  | 6/29/2021 8:36  | 1:28:00  | None                 |
| 6/29/2021 9:48  | Alert: Ltg Warning (west 7.9)       | 6/29/2021 11:20 | 1:32:00  | None                 |
| 6/29/2021 19:57 | Alert: Ltg Warning (west 9.1)       | 6/29/2021 21:55 | 1:58:00  | None                 |
| 6/29/2021 22:34 | Alert: Ltg Warning (northwest 9.8)  | 6/29/2021 23:16 | 0:42:00  | None                 |
| 6/30/2021 14:31 | Alert: Ltg Warning (northwest 8.5)  | 6/30/2021 16:47 | 2:16:00  | None                 |
| 7/7/2021 11:45  | Alert: Ltg Warning (east 9.1)       | 7/7/2021 12:15  | 0:30:00  | None                 |
| 7/7/2021 12:17  | Alert: Ltg Warning (southeast 7.0)  | 7/7/2021 12:48  | 0:31:00  | None                 |
| 7/7/2021 13:48  | Alert: Ltg Warning (east 5.5)       | 7/7/2021 14:22  | 0:34:00  | None                 |
| 7/13/2021 5:26  | Alert: Ltg Warning (south 9.4)      | 7/13/2021 6:19  | 0:53:00  | None                 |
| 7/13/2021 10:15 | Alert: Ltg Warning (north 9.2)      | 7/13/2021 11:08 | 0:53:00  | None                 |
| 7/24/2021 16:55 | Alert: Ltg Warning (north 9.9)      | 7/24/2021 18:55 | 2:00:00  | None                 |
| 7/28/2021 5:27  | Alert: Ltg Warning (west 8.2)       | 7/28/2021 6:28  | 1:01:00  | None                 |
| 7/29/2021 3:25  | Alert: Ltg Warning (north 6.8)      | 7/29/2021 4:46  | 1:21:00  | None                 |
| 8/6/2021 15:25  | Alert: Ltg Warning (south 9.8)      | 8/6/2021 17:19  | 1:54:00  | None                 |
| 8/6/2021 22:20  | Alert: Ltg Warning (southwest 2.3)  | 8/6/2021 23:21  | 1:01:00  | None                 |
| 8/6/2021 23:45  | Alert: Ltg Warning (south 9.3)      | 8/7/2021 0:15   | 0:30:00  | None                 |
| 8/8/2021 17:48  | Alert: Ltg Warning (west 9.2)       | 8/8/2021 19:29  | 1:41:00  | None                 |
| 8/9/2021 21:51  | Alert: Ltg Warning (northwest 5.0)  | 8/9/2021 23:34  | 1:43:00  | None                 |
| 8/9/2021 23:52  | Alert: Ltg Warning (southeast 2.4)  | 8/10/2021 0:37  | 0:45:00  | None                 |
| 8/10/2021 19:20 | Alert: Ltg Warning (southwest 9.3)  | 8/10/2021 21:44 | 2:24:00  | None                 |
| 8/11/2021 10:17 | Alert: Ltg Warning (northwest 4.0)  | 8/11/2021 12:30 | 2:13:00  | None                 |
| 8/12/2021 2:36  | Alert: Ltg Warning (southeast 7.1)  | 8/12/2021 4:02  | 1:26:00  | None                 |
| 8/18/2021 12:17 | Alert: Ltg Warning (south 6.2)      | 8/18/2021 12:53 | 0:36:00  | None                 |
| 8/18/2021 16:15 | Alert: Ltg Warning (south 4.9)      | 8/18/2021 16:45 | 0:30:00  | None                 |
| 8/19/2021 13:26 | Alert: Ltg Warning (west 6.7)       | 8/19/2021 14:21 | 0:55:00  | None                 |
| 8/19/2021 14:48 | Alert: Ltg Warning (south 9.5)      | 8/19/2021 15:29 | 0:41:00  | None                 |

|                 |                                    |                 |          | Compliance response<br>impacted due to |
|-----------------|------------------------------------|-----------------|----------|----------------------------------------|
| Start Date/Time | Lightning Warning Detail           | End Date/Time   | Duration | lightning stand down                   |
| 8/21/2021 16:19 | Alert: Ltg Warning (northwest 7.8) | 8/21/2021 17:02 | 0:43:00  | None                                   |
| 8/24/2021 18:31 | Alert: Ltg Warning (north 8.5)     | 8/24/2021 21:53 | 3:22:00  | None                                   |
| 8/25/2021 17:27 | Alert: Ltg Warning (west 9.7)      | 8/25/2021 23:08 | 5:41:00  | None                                   |
| 8/26/2021 17:06 | Alert: Ltg Warning (west 9.6)      | 8/26/2021 18:01 | 0:55:00  | None                                   |
| 8/29/2021 15:03 | Alert: Ltg Warning (south 9.6)     | 8/29/2021 15:33 | 0:30:00  | None                                   |
| 8/29/2021 16:50 | Alert: Ltg Warning (west 8.9)      | 8/29/2021 18:09 | 1:19:00  | None                                   |
| 9/7/2021 15:20  | Alert: Ltg Warning (west 9.7)      | 9/7/2021 16:53  | 1:33:00  | None                                   |
| 9/17/2021 19:49 | Alert: Ltg Warning (northwest 9.4) | 9/17/2021 20:20 | 0:31:00  | None                                   |
| 9/18/2021 2:37  | Alert: Ltg Warning (southeast 7.6) | 9/18/2021 3:07  | 0:30:00  | None                                   |

Per Paragraph 51.p. there were no power outages to report during the April 1, 2021 through September 30, 2021 reporting period.

If you have any questions regarding this semi-annual progress report, please contact me at (219) 397-4626 or email at <u>lford@primaryenergy.com</u>.

I certify under penalty of law that this information was prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my directions and my inquiry of the person(s) who manage the system, or the person(s) directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Sincerely, V Ju Se

Luke E. Ford Director EH&S Primary Energy

cc: East Chicago Public Library 2401 E. Columbus Drive East Chicago, Indiana 46312

East Chicago Public Library 1008 W. Chicago Avenue East Chicago, Indiana 46312

File: X://675

# ATTACHMENT 1

Second Quarter 2021 Deviation and Compliance Monitoring Report



**Cokenergy LLC** 

July 28, 2021

3210 Watling Street MC 2-991 East Chicago, IN 46312

Via UPS

Indiana Department of Environmental Management Compliance and Enforcement Branch Office of Air Quality 100 N. Senate Avenue Mail Code 61-50, IGCN 1003 Indianapolis, IN 46204 - 2251

RE: Cokenergy, LLC Quarterly Report –Second Quarter 2021 Part 70 Permit No. T089-41033-00383

To Whom It May Concern:

In accordance with sections C.18 and D.1.14 of the subject permit, 326 IAC 3-5-5 and 326 IAC 3-5-7, we have enclosed the second quarter 2021 reports for the Cokenergy, LLC facility. This report includes:

- Part 70 Quarterly Report Certification
- Part 70 Quarterly Deviation and Compliance Report
- CEMS Excess Emissions Report
- CEMS Downtime Report
- COMS Second Quarter 2021 Opacity Monitor Audit

If you have any questions concerning this data, please call Luke Ford at (219) 397-4626.

Sincerely,

Uha

Seth Acheson General Manager Cokenergy LLC

Enclosure cc: Luke Ford (scan via email) Cliff Yukawa IDEM (scan via email)

File: X:\\ 615.4

### INDIANA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT OFFICE OF AIR MANAGEMENT COMPLIANCE AND ENFORCEMENT SECTION PART 70 OPERATING PERMIT CERTIFICATION

Source Name: Cokenergy, LLC - a contractor of Cleveland-Cliffs Steel LLC

Source Address: 3210 Watling Street, MC 2-991, East Chicago, Indiana 46312-1610

Part 70 Permit No.: T089-41033-00383

This certification shall be included when submitting monitoring, testing reports/results or other documents as required by this permit.

Please check what document is being certified:

□ Annual Compliance Certification Letter

S Test Result (specify) 2<sup>nd</sup> Quarter 2021 COMS Performance Opacity Audit

Report (specify) 2<sup>nd</sup> Quarter 2021 Deviation and Compliance Monitoring Report

| Notification (specify |  |
|-----------------------|--|
|-----------------------|--|

Affidavit (specify)

Other (specify) \_\_\_\_\_\_

I certify that, based on information and belief formed after reasonable inquiry, the statements and information in the document are true, accurate, and complete.

| Signature:      | Sett alexand                    |
|-----------------|---------------------------------|
| Printed Name:   | Seth Acheson                    |
| Title/Position: | General Manager, Cokenergy, LLC |
| Phone:          | (219) 397-4521                  |
| Date:           | July 28, 2021                   |
|                 |                                 |

| INDIANA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT<br>OFFICE OF AIR QUALITY<br>COMPLIANCE AND ENFORCEMENT BRANCH<br>PART 70 OPERATING PERMIT<br>QUARTERLY DEVIATION AND COMPLIANCE MONITORING REPORT                                                                                              |                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Source Name:Cokenergy, LLC - a contractoSource Address:3210 Watling Street, MC 2-99Part 70 Permit No.T089-41033-00383                                                                                                                                                                         | Source Name: Cokenergy, LLC - a contractor of Cleveland-Cliffs Steel LLC<br>Source Address: 3210 Watling Street, MC 2-991, East Chicago, Indiana 46312-1610<br>Part 70 Permit No. T089-41033-00383                                                                                                                               |  |  |  |  |  |  |
| Months: <u>April</u> to <u>June</u>                                                                                                                                                                                                                                                           | Year: 2021 Page 1 of 2                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
| This report shall be submitted quarterly based on a ca<br>each deviation, the probable cause of the deviation, a<br>required to be reported by an applicable requirement a<br>requirement and do not need to be included in this rep<br>occurred, please specify in the box marked "No deviat | lendar year. Any deviation from the requirements, the date(s) of<br>nd the response steps taken must be reported. Deviations that are<br>shall be reported according to the schedule stated in the applicable<br>port. Additional pages may be attached if necessary. If no deviations<br>tions occurred this reporting period". |  |  |  |  |  |  |
| ➢ NO DEVIATIONS OCCURRED THIS REPORTING                                                                                                                                                                                                                                                       | g Period                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |
| THE FOLLOWING DEVIATIONS OCCURRED TH                                                                                                                                                                                                                                                          | IIS REPORTING PERIOD                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |
| Permit Requirement: (specify permit condition #)                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |
| Date of Deviation:                                                                                                                                                                                                                                                                            | Duration of Deviation:                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
| Number of Deviations:                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |
| Probable Cause of Deviation:<br>Response Steps Taken:                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |
| Permit Requirement: (specify permit condition #)                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |
| Date of Deviation: Duration of Deviation:                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |
| Number of Deviations:                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |
| Probable Cause of Deviation:                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |
| Response Steps Taken:                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |

| Page | 2 | of | 2 |
|------|---|----|---|
|------|---|----|---|

| Permit Requirement: (specify permit condition #) |                        |  |  |  |
|--------------------------------------------------|------------------------|--|--|--|
| Date of Deviation:                               | Duration of Deviation: |  |  |  |
| Number of Deviations:                            |                        |  |  |  |
| Probable Cause of Deviation:                     |                        |  |  |  |
| Response Steps Taken:                            |                        |  |  |  |
|                                                  |                        |  |  |  |

| Permit Requirement: (specify permit c | ondition #)            |
|---------------------------------------|------------------------|
| Date of Deviation:                    | Duration of Deviation: |
| Number of Deviations:                 |                        |
| Probable Cause of Deviation:          |                        |
| Response Steps Taken:                 |                        |

| Permit Requirement: (spec | ify permit condition #)   |                  |
|---------------------------|---------------------------|------------------|
| Date of Devlation:        | Durati                    | on of Deviation: |
| Number of Deviations:     |                           |                  |
| Probable Cause of Deviati | on:                       |                  |
|                           |                           | ·                |
| Response Steps Taken:     |                           |                  |
|                           |                           |                  |
| Form Completed by:        | Seth Acheson              |                  |
| Title / Position:         | General Manager, Cokenerg | y, LLC           |
| Date:                     | July 28, 2021             |                  |

Phone: (219) 397-4521

**Excess Emissions and Downtime Report** 

## PLANT OPERATIONS DOWNTIME SUMMARY

### Reporting Period: 2nd Quarter of 2021

| Commencement of<br>Emission Unit Downtime             | Completion of<br>Emission Unit Downtime | Emission Unit Downtime<br>Duration (hours) Reasons for Emission Unit Do |  |  |  |  |  |
|-------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------|--|--|--|--|--|
| NONE                                                  |                                         |                                                                         |  |  |  |  |  |
| otal Emission Unit Downtime for the quarter = 0 hours |                                         |                                                                         |  |  |  |  |  |

#### EXCESS EMISSIONS SUMMARY

Reporting Period: 2nd Quarter of 2021

#### SO<sub>2</sub> Exceedances

Emission Standard: 1,656 lb/hr on a 24-hr average basis

(Note that this limit is for the combined emissions from Cokenergy Stack 201 and 16 IHCC Vent Stacks)

| Date/Time of Date/T<br>Commencement Comp | Date/Time of | Magnitu        | lagnitude of Emissions (lb/hr) |           | Reasons for      | Connection Actions Talan |  |
|------------------------------------------|--------------|----------------|--------------------------------|-----------|------------------|--------------------------|--|
|                                          | Completion   | Main Stack Avg | Vent Stack Avg                 | Plant Avg | Excess Emissions | Corrective Actions Taken |  |
|                                          |              |                |                                |           |                  |                          |  |
|                                          |              |                |                                |           |                  |                          |  |
|                                          | None         |                |                                |           |                  |                          |  |
|                                          |              |                |                                |           |                  |                          |  |
|                                          |              |                |                                |           |                  |                          |  |

## EXCESS EMISSIONS SUMMARY

Reporting Period: 2nd Quarter of 2021

**Opacity Exceedances** 

Emission Standard: 20% opacity

| Date/Time of<br>Commencement | Date/Time of<br>Completion | Magnitude of<br>Emissions | Corrective Actions Taken |  |  |  |  |  |
|------------------------------|----------------------------|---------------------------|--------------------------|--|--|--|--|--|
|                              |                            |                           |                          |  |  |  |  |  |
| None                         |                            |                           |                          |  |  |  |  |  |
|                              |                            |                           |                          |  |  |  |  |  |
| Total Duration               | 0 minutes                  |                           |                          |  |  |  |  |  |

# COKENERGY, LLC, East Chicago, IN Plant ID: 089-00383 Emissions Unit ID: Stack 201 Emissions Unit: Heat Recovery Coke Carbonization Waste Heat Stack CONTINUOUS MONITORING SYSTEM DOWNTIME SUMMARY

Reporting Period: 2nd Quarter of 2021

### **Opacity Monitor Downtime**

| Date/Time of<br>Commencement | Duration of Downtime<br>(minutes) | Reasons for<br>Instrument Downtime | System Repairs and Adjustments |
|------------------------------|-----------------------------------|------------------------------------|--------------------------------|
| 5/4/21 8:00                  | 240                               | Quarterly PM                       | Completed PMs                  |
| 5/5/21 8:00                  | 120                               | Quarterly Opacity Audit            | Completed filter audit         |
| Total Downtime               | 360 minutes                       |                                    |                                |

Note: Daily zero and span checks of the instrument have been excluded from the downtime summary per 326 IAC 3-5-7.

### CONTINUOUS MONITORING SYSTEM DOWNTIME SUMMARY

### Reporting Period: 2nd Quarter of 2021

### SO<sub>2</sub> CEMS Downtime

| Date/Time of<br>Commencement | Duration of Downtime<br>(hours) | Reasons for<br>Instrument Downtime | System Repairs and Adjustments |
|------------------------------|---------------------------------|------------------------------------|--------------------------------|
| 4/23/21 9:00                 | 2                               | Flow control panel maintenance     | Cleaned rotameters             |
| Total Downtime               | 2 hours                         |                                    |                                |

Note: Daily zero and span checks of the instrument have been excluded from the downtime summary per 326 IAC 3-5-7.

# **OPACITY PERFORMANCE AUDIT**

FOR

# **Primary Energy**

E. Chicago, IN

Unit: Stack 201

MONITORING SOLUTIONS, INC. MODEL: DURAG D-R 290 COMS

Second (2nd) Quarter Results 2021

Audit Completed On: 5/5/2021

PREPARED BY:



### TABLE OF CONTENTS

|             |       | hibeb of contents                                 |   |
|-------------|-------|---------------------------------------------------|---|
| Ι.          | Intro | oduction                                          | 1 |
| <i>II</i> . | Мон   | nitoring Solutions, Inc. COMS Model Durag D-R 290 |   |
|             | Α.    | COMS Description                                  | 2 |
|             | В.    | Performance Audit Procedures                      | 3 |
|             | C.    | Interpretation of Audit Results                   | 9 |
|             |       |                                                   |   |

Appendix A - COMS Audit Data Forms for the Durag Model D-R 290 Appendix B - Audit Filter Certification Sheet(s)

### I. Introduction

Monitoring Solutions, Inc. was contracted to conduct an opacity performance audit on a Durag Model D-R 290 opacity system.

Client: Primary Energy City, State: E. Chicago, IN Auditor: Dan Bowles Audit Date: 5/5/2021

The performance testing consists of:

- 1 Zero and Span Check
- 2 Zero Compensation Check
- 3 Optical Alignment Check
- 4 Calibration Error Check
- 5 Annual Zero Alignment (When required)

All raw data, calculated data and final summary are presented. The results indicate compliance for all specifications. Testing was performed as per 40CFR60 Appendix F and 40CFR60 Appendix B, PS1 (Where Applicable).

Annual "Zero Alignment" check performed this quarter:

YES: \_\_\_\_\_ NO: \_\_X \_\_\_ ERROR: \_\_N/A

| Summa             | ry of Cal | libration | Error Check |
|-------------------|-----------|-----------|-------------|
| Filter :          | Low       | Mid       | High        |
| Percent of Error: | 0.40      | 0.00      | 0.08        |
|                   | PASS      | PASS      | PASS        |

| Reviewed by: | Daniel Horlacher |  |  |
|--------------|------------------|--|--|
|              | 6/18/2021        |  |  |
| Date:        |                  |  |  |

**Revision: March 2016** 

Page 1

### PERFORMANCE AUDIT PROCEDURES FOR THE MONITORING SOLUTIONS, INC. OPACITY MONITOR

### II. Monitoring Solutions, Inc. Durag Model D-R 290

The instrument is manufactured by the Durag Corporation and distributed and serviced by Monitoring Solutions, Inc.

### A. COMS Description

The Monitoring Solutions, Inc. D-R 290 opacity monitoring system consists of four major components: the Transmissometer, the terminal control box, the air-purging system and the remote control unit and data acquisition equipment. The Transmissometer component consists of an optical transmitter/receiver (transceiver) unit mounted on one side of a stack or duct and a retro reflector unit mounted on the opposite side. The transceiver unit contains the light source, the photodiode detector, and the associated electronics. The transceiver uses a single-lamp, single detector system to determine effluent opacity. A LED light source is modulated electronically at 2 KHz to eliminate any ambient light interference. The modulated beam is configured to alternately produce reference and measurement signals so that the effects of variations in the optical and electronic components of the COMS are minimized.

In a single display configuration, an AW unit is mounted in a blue housing next to the transceiver location. In a dual display configuration, an AZ unit is mounted in the blue housing next to the transceiver location and an AW is mounted in a remote location, typically, a control room. The AZ and the AW communicate via an RS 422 cable. The AZ unit provides an on stack readout and can be used as a diagnostic tool. In either configuration, only the AW provides the signals to the final recording device.

The air purging system serves a threefold purpose: 1) it provides an air window to keep exposed optical surfaces clean; 2) it protects the optical surfaces from condensation of stack gas moisture; and 3) it minimizes thermal conduction from the stack to the instrument. A standard installation has one air-purging system for each the transceiver and the retro reflector units.

The opacity monitor measures the amount of light transmitted through the effluent from the transceiver to the retro reflector and back again. The control unit uses the effluent transmittance to calculate the optical density of the effluent at the monitor location, or the "path" optical density. In order to provide stack exit opacity data, the path optical density must be corrected. The correction factor is expressed as the ratio of the stack exit inside diameter to the inside diameter of the stack at the Transmissometer location. This ratio is called the "stack correction factor" (SCF) by Monitoring Solutions, Inc. The following equations illustrate the relationship between this ratio, path optical density, and stack exit opacity.

### Calculation of "Stack Correction Factor"

|        | $L_x/L_t$       |   | stack correction factor                                                     |
|--------|-----------------|---|-----------------------------------------------------------------------------|
| where: | L <sub>x</sub>  | = | stack exit inside diameter (in)                                             |
|        | L               | - | the stack inside diameter (or the duct width) at the monitor location (in). |
|        | OP <sub>x</sub> |   | $1 - (1 - \frac{Opacity}{100})^{correction factor}$                         |
|        | OP <sub>x</sub> | = | stack exit opacity (%)                                                      |

### B. Performance Audit Procedures

### 1. Preliminary Data

- a. Obtain the stack exit inside diameter (in feet) and the stack inside diameter at the monitor location (in feet). Record these values in Blanks 1 and 2 of the Monitoring Solutions, Inc. D-R 290 Performance Audit Data Sheet.
  - **Note:** Effluent handling system dimensions may be acquired from the following sources listed in descending order of reliability: 1) physical measurements, 2) construction drawings, 3) opacity monitor installation/certification documents, and 4) source personnel recollections.
- b. Calculate the stack correction factor (SCF) by dividing the value in Blank 1 by the value in Blank 2. Record the result in Blank 3.
- c. Record the source-cited Stack Correction Factor (SCF) in Blank 4.
  - **Note:** The stack correction factor (SCF) is preset by the manufacturer using information supplied by the source. The value recorded in Blank 4 should be the value source personnel agree should be set inside the monitor.
- d. Obtain the reference zero and span calibration values. Record these values in Blank 5 and Blank 6, respectively.
  - **Note:** The reference zero and span calibration values may not be the same as the values recorded during instrument installation and/or certification. The zero and span values recorded in Blank 5 and Blank 6 should be the reference values recorded during the most recent clear-path calibration of the CEMS.

### 2. Error Checks

The following steps describe the error codes for the Monitoring Solutions, Inc. D-R 290 remote control unit. The audit can continue with the error codes shown below being present, provided the source has been informed of the fault conditions. All other error codes must be corrected prior to audit.

Error code 100 = Transceiver blower fault Error code 200 = Transceiver filter plugged Error code 300 = Reflector blower fault Error code 400 = Reflector filter plugged

**Note:** If a fault is active, an error code will be displayed on the stack mounted display and on the remote display. An explanation of the error codes can be found in the manual.

### 3. Instrument Range Check

- a. Check the COMS measurement range by pressing the MOD button (the LED on the button will light up) and using the PLUS button to cycle through the displays.
- b. Record the instrument range in Blank 11.

### 4. Reference Signal, Zero and Span Checks

- a. Initiate the calibration cycle by pressing the arrow and plus buttons simultaneously and holding for approximately 5 seconds.
  - **Note:** The opacity monitor will automatically cycle through the internal zero (zero point check), external zero (window check), span and stack taper ratio modes. Approximately 6 minutes for a complete cycle.
- b. Record the milliamp value shown for the internal zero (zero point check) displayed on the control panel display in Blank 12.
  - Note: The internal zero checks the instrument reference signal (Zero Point Check). Since the instrument provides a full scale output of 4 to 20 milliamps, a value of 4 milliamps displayed on the control unit display represents a zero condition. After 1 ½ minutes in the internal zero mode, the monitor will automatically switch to the external zero mode (Window Check).
- c. Record the milliamp value shown for the external zero (window check) displayed on the control panel in Blank 13. Also record the external zero value (in percent opacity) displayed on the opacity data recorder in Blank 14.
  (Continued on next page)

- Note: During the zero calibration check, the zero mirror is moved into the path of the measurement beam by a servomotor. The zero mechanism is designed to present the transceiver with a simulated clear-path condition. The daily zero check does not test the actual clear-path zero, nor does it provide a check of cross-stack parameters such as the optical alignment of the Transmissometer or drift in the reflectance of the retro reflector. The actual clear-path zero can only be checked during clear-stack or off-stack calibration of the CEMS. In addition to simulating the instrument clear-path zero, the zero mechanism allows the amount of dust on the transceiver optics (primary lens and zero mirror) to be quantified. After 1 ½ minutes in the external zero mode, the CEMS will automatically enter the span mode.
- d. Record in Blank 15 the span value (in milliamps) displayed on the control panel display.
  Also record the span value (in percent opacity) displayed on the data recorder in Blank
  16. Go to the Transmissometer location.
  - **Note:** During the span calibration check, a servomotor moves an internal span filter into the path of the measurement beam while the zero mirror is in place. The span mechanism is designed to provide an indication of the upscale accuracy of the CEMS relative to the simulated clear-path zero. Note: The opacity monitor display will output its stack correction factor (SCF) for 1 ½ minutes when the span portion of the calibration cycle is completed. The CEMS automatically returns to the measurement mode when the SCF portion of the calibration cycle is complete.

### 5. Reflector Dust Accumulation Check.

- a. Record the effluent opacity prior to cleaning the retroreflector optics in Blank 17.
- b. Open the reflector housing, inspect and clean the retroreflector optics, and close the housing.
- c. Record the post-cleaning effluent opacity in Blank 18. Go to the transceiver location.

### 6. Transceiver Dust Accumulation Check.

- a. Record the pre-cleaning effluent opacity in Blank 19.
- b. Open the transceiver, clean the optics (primary window and zero mirror) and close the transceiver.
- c. Record the post-cleaning effluent opacity in Blank 20.

### 7. Alignment Check

- a. Determine the monitor alignment by looking through the alignment port of the side of the transceiver.
- b. Observe whether the image is centered in the cross hairs and record this information (YES or NO) in Blank 21.

### 8. Zero Compensation Check

The Durag 290 provides internal compensation for window contamination. This compensation value can be determined by performing the Window Check. This compensation cannot be disabled for testing. Remove internal compensation as follows: Clean the transceiver window and the zero mirror lens. Verify the window check value is at zero so no compensation is applied to the quarterly audit. Enter the Filter Audit Mode and verify the starting Durag opacity value is zero percent. **NOTE:** This process must be completed prior to the Calibration Error Check.

### 9. Zero Alignment Error Check

The Zero Alignment Error Check is performed one time each year. This check utilizes Durag's Clear Path Procedure. This procedure verifies the "measuring" zero point of the unit in a known clear path setup. The Transceiver and reflector are removed from their installation and set up on stands in a clean, dust free environment. The stands are set at the same distance as the installation location. Without performing any adjustments, the measuring zero is compared to the simulated zero - or - Window Check. The difference between the measuring zero and the simulated zero, must NOT exceed 2% opacity.

Verify the Zero Compensation Check has been performed. Since the zero compensation function cannot be disabled for the zero alignment check, the optics must be cleaned and a manual calibration performed. This will set the internal compensation value to 0.0%. This MUST be accomplished prior to the Zero Alignment Check.

Perform the following to document the "Zero Alignment Error":

- a) Remove the Transceiver & Reflector from its current installation and setup on stands at the exact distance as their original location.
- b) Perform the Zero Compensation Check and perform a manual calibration.
- c) Record the Durag's response to the clear path zero in % opacity without any adjustment.
- d) Activate the simulated zero (Window Check) and record the reading in % opacity without any adjustment. (continued on next page)

- e) The response difference between these two readings are recorded as the "zero alignment error". The maximum allowable zero alignment error is 2%.
- f) Adjust the simulated zero (window check) to read the same value in % opacity as the clear path zero.

### 10. Calibration Error Check

The calibration error check is performed using three neutral density filters. Performing the calibration error check on-stack using the filters determines the linearity of the instrument response relative to the current clear-path zero setting. This calibration error check does not determine the accuracy of the actual instrument clear-path zero or the status of any cross-stack parameters. A true calibration check is performed by moving the on-stack components to a location with minimal ambient opacity, making sure that the proper path length and alignments are attained, and then placing the calibration filters in the measurement path.

- a. Put the monitor in Filter Audit mode.
- b. Wait approximately three minutes or until a clear "zero" value has been recorded and displayed on the data recorder.
- c. Record the audit filter serial numbers and opacity values in Blanks 22, 23, and 24.
- d. Remove the filters from their protective covers, inspect and if necessary, clean them.
- e. Insert the low range neutral density filter into the filter audit slot located in front of the heated lens.
- f. Wait approximately three minutes or until a clear value has been recorded and displayed on the data recorder.
  - **Note:** The audit data should be taken from a data recording/reporting device that presents instantaneous opacity (or opacity data with the shortest available integration period).
- g. Record the COMS response to the low range neutral density filter.
- h. Remove the low range filter and insert the mid range neutral density filter.
- i. Wait approximately three minutes and record the COMS response to the mid range neutral density filter.
- j. Remove the mid range filter and insert the high range filter.
- k. Wait approximately three minutes and record the COMS response to the high range neutral density filter. (continued on next page)

- I. Remove the high range filter.
- m. \* If applicable, wait approximately three minutes, and record the zero value.
- n. Repeat steps (e) through (m) until a minimum of <u>three</u> opacity readings are obtained for each neutral density filter.
- o. If six-minute integrated opacity data is required, repeat steps (e) through (m) once more, changing the waiting periods to 13 minutes.
- p. Record the six-minute integrated data.
  - **Note:** In order to acquire valid six-minute averaged opacity data, each filter must remain in for at least two consecutive six-minute periods; the first period will be invalid because it was in progress when the filter was inserted. A waiting period of 13 minutes is recommended. You should have a "starting zero" reading and an "ending zero" reading.
- q. When the calibration error check is complete, return the monitor to measuring mode. Close the transceiver head and the weather cover, and return to the COMS control unit.

### 11. Test Conclusion

- a. Obtain a copy of the audit data from the data recorder.
- b. Transcribe the calibration error response from the data recorder to Blanks 25 through 50 of the audit form and complete the audit data calculations.

### C. Interpretation of Audit Results

This section is designed to help the auditor interpret the D-R 290 performance audit results.

### Error codes / fault analysis

Error codes are typically associated with parameters that the monitor manufacturer feels are critical to COMS function, and to the collection of valid opacity data. The parameters associated with each of the error codes are found in the manufacturer's manual. With the exception of alarms that warn of elevated opacity levels (alarm or warning lamps), the error codes indicate that the COMS is not functioning properly. An error or failure indication will be represented by a "YES" in Blanks 7 - 10.

(continued on next page)

### **Stack Exit Correlation Error Check**

The path length correction error in Blank 51 should be within +2%. This error exponentially affects the opacity readings, resulting in over - or - underestimation of the stack exit opacity. The most common error in computing the optical path length correction factor is the use of the flange-to-flange distance in place of the stack/duct inside diameter at the monitor location. This error will result in underestimation of the stack exit opacity and can be identified by comparing the monitor optical path length to the flange-to-flange distance; the flange-to-flange distance should be greater by approximately two to four feet

### **Control Panel Meter Error (Optional)**

The accuracy of the control panel meter (AW) is important at sources using the meter during monitor adjustment and calibration. The accuracy of the control panel meter (Blank 52 and Blank 54) is determined by comparing the zero and span reference values to the panel meter output recorded during the COMS calibration check.

**Note:** Some installations utilize a different "Instrument Range Setting" than the normal 100% range. The panel meter span error must be corrected for the different range in order to provide an accurate error result. Use the following equation to calculate the span error corrected for "Instrument Range" (Blank 11):

> Panel Meter span error in % opacity = (((Blank 15 - 4) ÷ 16) × Blank 11) - Blank 6

### Zero and Span Checks

The D-R 290 internal zero or "zero point check" (Blank 12 should be set to indicate 0% opacity (equivalent to 3.7 - 4.3 mA). An external zero error or "window check" (Blank 53) greater than 4% opacity is usually due to excessive dust accumulation on the optical surfaces, electronic drift or an electronic/mechanical offset of the data recorder. Excessive dust on the optical surfaces sufficient to cause a significant zero error would be indicated by the difference in the internal and external zero values and/or window alarm. Instrument span error (Blank 55) may be caused by the same problem(s) that cause zero errors and may be identified in a similar fashion.

If the zero and span errors are due to a data recorder offset, both errors will be in the same direction and will be of the same magnitude

(continued on next page)

The external zero displayed on the control unit panel meter (AW) also indicates the level of dust accumulation on the zero retroreflector and transceiver measurement window. The difference between the internal and external zero responses should equal the amount of dust found on the transceiver optics (Blank 57). To convert the zero responses to a value that represents lens dusting in percent opacity, use the following equation.

Meter response in % opacity = 6.25 [(Blank 13) - (Blank 12)]

### **Optical Alignment Check**

When the transceiver and retroreflector are misaligned, a portion of the measurement beam that should be returned to the measurement detector is misdirected, resulting in a positive bias in the data reported by the COMS. One of the most common causes of misalignment is vibration which may cause the on-stack components to shift slightly on the instrument mounting flanges. Another common cause of misalignment is thermal expansion and contraction of the structure on which the transmissometer is mounted. If the COMS is being audited while the unit is off-line (cold stack), the results of the alignment analysis may not be representative of the alignment of the instrument when the stack or duct is at normal operating temperature. When checking the alignment, the reflected light beam should be centered.

### Zero Compensation Check

The Zero Compensation Check should be performed and documented as such in (Blank 21a).

### Annual Zero Alignment Error Check

The Zero Alignment Error Check is performed once each year. It verifies that the enegy output from the simulated zero device (Window Check) is within 2% of the Clear Path reading. The values required for this check are documented in (Blank 21b). If the difference between the Clear Path Value and the Simulated Zero (Window Check) value differ by more than 2%, then the COMS unit is considered Out Of Control. If the difference is 2% or less, then the Window Check Value is adjusted to match the Clear Path value.

### **Optical Surface Dust Accumulation Check**

The results of the dust accumulation check (Blank 58) should not exceed 4%. A dust accumulation value of more than 4% opacity indicates that the air flow of the purge system and/or the cleaning frequency of the optical surfaces are inadequate. When determining the optical surface dust accumulation, the auditor should note whether the effluent opacity is relatively stable (within +2% opacity) before and after cleaning the optical surfaces. If the effluent opacity is fluctuating by more that +2%, the dust accumulation analysis should be omitted.

(continued on next page)

### **Calibration Error**

Calibration error results (Blanks 68, 69 and 70) in excess of +3% are indicative of a nonlinear or miss calibrated instrument. However, the absolute calibration accuracy of the monitor can be determined only when the instrument clear-path zero value is known. If the zero and span data are out-of-specification, the calibration error data will often be biased in the direction of the zero and span errors. Even if the zero and span data indicate that the COMS is calibrated properly, the monitor may still be inaccurate due to error in the clear-path zero adjustment. The optimum calibration procedure involves using neutral density filters during clear-stack or off-stack COMS calibration. This procedure would establish both the absolute calibration accuracy and linearity of the COMS. If this procedure is impractical, and it is reasonable to assume that the clear-path zero is set correctly, the monitor's calibration can be set using either the neutral density filters or the internal zero and span values. Appendix A COMS Audit Data Forms for the Durag Model D-R 290

| 5/5/2021                              | Primary Energy                                                       | E. Chicago, IN                       | Stack 201                | Page 1 of 5  |  |  |  |
|---------------------------------------|----------------------------------------------------------------------|--------------------------------------|--------------------------|--------------|--|--|--|
| Company:                              | Primary Energy<br>Stack 201                                          | City, ST                             | City, ST: E. Chicago, IN |              |  |  |  |
| Auditor:<br>Attendees:<br>Transceiver | Dan Bowles<br>N/A<br>serial number: 1248342                          | : Monitoring Solution                | S                        |              |  |  |  |
| Reflector se<br>Remote seri<br>Date:  | rial number: <u>1248145</u><br>ial number <u>1248283</u><br>5/5/2021 | COMS Flange to Flange distar         | nce (Feet / Inches):     | 226.125"     |  |  |  |
| Preliminary                           | Data                                                                 |                                      |                          |              |  |  |  |
| 1 Inside dia                          | ameter at Stack Exit = Lx                                            |                                      | 216.00                   | 0 inches     |  |  |  |
| 2 Inside dia                          | ameter at the Transmissometer in                                     |                                      | 210.00                   |              |  |  |  |
| 4 Source-cl                           | ited Stack Correction Factor (SC                                     | = CX/C(<br>F)                        | 1.00                     | 0            |  |  |  |
| 5 Source-c                            | ited zero automatic calibration va                                   | alue (% opacity)                     | 0.0                      | 0 %          |  |  |  |
| 6 Source-c                            | ited span automatic calibration v                                    | alue (% opacity)                     | 40.0                     | <u>10</u> %  |  |  |  |
| [START                                |                                                                      | CORDER LOCATION]                     |                          |              |  |  |  |
| (ii requ                              |                                                                      | LATION DATE SOURCE PROCES            | S UNIT/STACK             |              |  |  |  |
|                                       |                                                                      | HE TIME OF DAY.                      | o on no raok             |              |  |  |  |
| Ewar and a                            |                                                                      | •                                    | VES                      | or - NO      |  |  |  |
| Z Blower II                           | ass of purge air from blower - F                                     | Fror 100, 3001                       |                          |              |  |  |  |
| 8 Filter [Air                         | r filter restriction - Error 200, 400                                |                                      |                          |              |  |  |  |
| 9 Window                              | Excessive dirt on transceiver wi                                     | ndow - Error 0011                    |                          |              |  |  |  |
| 10 Fault [A                           | dditional CEMS fault has occurre                                     | ed Note fault code                   |                          | 10           |  |  |  |
| on Opacity                            | display and consult the instrume                                     | nt manual.]                          | L                        |              |  |  |  |
| Instrument                            | Range Check                                                          | <u></u>                              |                          |              |  |  |  |
| 11 Instrum                            | ent range setting                                                    |                                      | 1(                       | <u>00</u> %  |  |  |  |
| Zero Check                            | <                                                                    |                                      |                          |              |  |  |  |
| 12 Opacity                            | / Display - Internal zero value in '                                 | 'milliamps" (Zero Point Check)       | 4.                       | 00 mA        |  |  |  |
|                                       | [Wait for 1½ minutes for autor                                       | natic change to external zero mode.] |                          |              |  |  |  |
| 13 Opacity                            | / Display - Zero calibration value                                   | in "milliamps" (Window Check)        | 4.                       | 00 mA        |  |  |  |
| 14 Opacity                            | / data recorder zero calibration v                                   | alue in "% Op" (Window Check)        | 0.                       | <br>00 mA    |  |  |  |
| . ,                                   | [Wait 1½ minutes for au                                              | tomatic change to span mode.]        |                          |              |  |  |  |
| Span Chec                             | :k                                                                   |                                      |                          |              |  |  |  |
| 15 Opacity                            | y Display - Span calibration value                                   | e in "milliamps" (Span Check)        | 10.                      | <u>40</u> mA |  |  |  |
| 16 Opacity<br>[Go to i                | y data recorder span calibration v<br>reflector location.]           | /alue in "% Op" (Span Check)         | 40.                      | <u>00</u> %  |  |  |  |

| 5/5/20                                | 021 Primar                                                                                                                                            | y Energy                                                                     | E. Chicago, IN                       | Stack 201                      | Page 2 of 5 |  |  |  |
|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------|--------------------------------|-------------|--|--|--|
| Reflec<br>17 Pi<br>18 Pc<br>IGo to    | ctor Dust Accumulation<br>re-cleaning effluent opac<br>[Inspect and clean option<br>pst-cleaning effluent opac<br>p transceiver location ]            |                                                                              | <u> </u>                             |                                |             |  |  |  |
| <u>Trans</u><br>19 Pr<br>[In<br>20 Pc | ceiver Dust Accumulation<br>re-cleaning effluent opac<br>spect and clean optical<br>ost-cleaning effluent opac                                        | on Check and Zero Co<br>sity (% Op)<br>window and zero mirro<br>acity (% Op) | mpensation Check                     | 3.t<br>2.s                     | 5 %<br>9 %  |  |  |  |
| Optica<br>[LOO<br>21 Is               | )ptical Alignment Check<br>LOOK THROUGH ALIGNMENT SIGHT AND DETERMINE IF BEAM IMAGE IS CENTERED.]<br>1 Is the image centered?<br>YES - or - NO<br>YES |                                                                              |                                      |                                |             |  |  |  |
| Zero                                  | Compensation Check                                                                                                                                    |                                                                              |                                      |                                |             |  |  |  |
| 21a                                   | Did you comply with th                                                                                                                                | e Zero Compensation                                                          | Check?                               | YES - o<br>YE                  | r - NO<br>S |  |  |  |
| Annus                                 | al Zero Alignment Error                                                                                                                               | Check                                                                        |                                      |                                |             |  |  |  |
| 21b                                   | Did you comply with th                                                                                                                                | e Annual Zero Alignm                                                         | ent Error Check?                     | YES - o<br>NO                  | r - NO<br>D |  |  |  |
|                                       | Zero Alignment Error (<br>Clear Path Value % =                                                                                                        | Check results (if applic                                                     | able):<br>Check Value % = <u>N/A</u> | Zero Alignment<br>Error % = [1 | N/A         |  |  |  |
| [Reco                                 | rd audit filter data.]                                                                                                                                |                                                                              |                                      |                                |             |  |  |  |
|                                       | Filter                                                                                                                                                | Serial NO.                                                                   | % Opacity                            | SCF%                           | 0           |  |  |  |
|                                       | 22 LOW                                                                                                                                                | YL05                                                                         | 17.30                                | 17.30                          | ) %         |  |  |  |
|                                       | 23 MID                                                                                                                                                | YX58                                                                         | 24.50                                | 24.50                          | <u>)</u> %  |  |  |  |
|                                       | 24 HIGH                                                                                                                                               | ZQ15                                                                         | 42.90                                | 42.90                          | ) %         |  |  |  |

[Remove the audit filters from the protective covers, inspect, and clean each filter]

[Set the unit up to display the initial zero. Wait 3 minutes to allow opacity data recorder to record initial zero]

[Insert a filter, wait approximately 3 minutes, and record the opacity value reported by the opacity data recorder. Repeat the process 5 times for each filter.]

[Read and transcribe final calibration error data from the opacity data recorder on the next page]

| 5/5/2021 |        | Primary    | Energy    |          |         | E. Chica | go, IN | Stack 20 | D1                 | Page 3 of 5    |
|----------|--------|------------|-----------|----------|---------|----------|--------|----------|--------------------|----------------|
| 25       | ZERO   | 0.10       | _         |          |         |          |        |          |                    |                |
|          | LOW    |            | MID       |          |         | HIGH     |        |          | (If Requin<br>ZERC | ed)            |
| 26       | 17.70  | 27         | 24.50     |          | 28      | 42.90    |        | 29       | N/A                |                |
| 30       | 17.70  | 31         | 24.50     |          | 32      | 42.90    |        | 33       | N/A                |                |
| 34 `     | 17.70  | - 35       | 24.50     |          | 36 -    | 42.90    |        | 37       | N/A                |                |
| 38       | 17.70  | - 39       | 24.50     |          | 40 -    | 42.90    |        | 41       | N/A                |                |
| 42       | 17.70  | 43         | 24.50     |          | 44      | 43.00    |        | 45       | 0.10               |                |
|          | [Six-m | inute aver | age data, | if appli | cable.] |          |        |          |                    |                |
|          | ZERO   |            | LOW       |          | MID     |          | HIGH   |          | (If Re<br>Zi       | quired)<br>ERO |
| 46       | 0.10   | 47         | 17.70     | 48       | 24.50   | 49       | 43.00  |          | 50 0               | .10            |

Reserved Area

## Calculation of Audit Results

| Stack Correction Factor corre | ation error (%):                              |                            |       |        |
|-------------------------------|-----------------------------------------------|----------------------------|-------|--------|
|                               | 1.000                                         | 1.000                      |       |        |
|                               | 51 $\left[\frac{Blank \ 4 - E}{Blank}\right]$ | $\frac{lank 3}{3}$ ] × 100 | =<br> | 0.00   |
|                               | 1.0                                           | 00                         |       |        |
| Zero Error (% Op.):           | 4.00                                          | 0.00                       |       |        |
|                               | 4.00                                          | 0.00                       |       |        |
| 52 Opacity Display            | 6.25 * (Blank 13 - 4.0) ·                     | Blank 5                    | =     | 0.00 % |
|                               | 0.00                                          | 0.00                       |       |        |
| 53 Opacity Data Recorder      | Blank 14 -                                    | Blank 5                    | =     | 0.00   |

| 5/5/2021                                  | Primary Energy                              |                      | E. Chicago,   | <u>IN</u> : | Stack 201 | Page 4 of 5 |
|-------------------------------------------|---------------------------------------------|----------------------|---------------|-------------|-----------|-------------|
| Span Error (% Op.)                        | :                                           |                      |               |             |           |             |
|                                           | 10.40                                       |                      | 100           | 40.00       |           |             |
| 54 Opacity Display                        | (((Blank 15 - 4.0)                          | ÷ 16) × 8            | 3lank 11) - E | Blank 6     | =0.0      | 0_%         |
|                                           | 40                                          |                      | 40            |             |           |             |
| 55 Opacity Data Re                        | corder Blank                                | 16 -                 | Blank 6       |             | =0.0      | <u>0</u>    |
| Optical Surface Du                        | st Accumulation (% OP):                     |                      |               |             |           |             |
|                                           | 3.6                                         | -                    | 3.5           |             |           |             |
| 56 Retroreflector                         | Blank                                       | 17 -                 | Blank 18      |             | =         | <u>0</u> %  |
|                                           | 3.5                                         |                      | 2.9           |             |           |             |
| 57 Transceiver                            | Blank                                       | 19 -                 | Blank 20      |             | =0.6      | 0 %         |
|                                           | 0.1                                         |                      | 0.6           |             |           |             |
| 58 Total                                  | Blank                                       | 56 +                 | Blank 57      |             | = 0.7     | <u>0</u> %  |
|                                           |                                             |                      |               |             |           |             |
| Optical Path Lengt<br>Audit Filters Corre | h Correction (SCF)<br>cted for Path Length: |                      |               |             |           |             |
|                                           | 17.20                                       | 1.0                  | 00            |             |           |             |
| 59 LOW.                                   | 17.30<br>Blank 22                           | 1.0                  | 00            |             |           |             |
|                                           | $1 - (1 - (\frac{1}{100})^{-1})$            | ) <sup>Blank 4</sup> | )x 100        |             | =17.3     | <u>0</u> %  |
| 60 MID:                                   | 24.50                                       | 1.0                  | 00            | ······      |           |             |
|                                           | $1 - (1 - (\frac{Blank 23}{100}))$          | Blank 4              | x 100         |             | =24.5     | 0 %         |
|                                           | 100                                         |                      |               |             |           |             |
| 61 HIGH                                   | 42.90                                       | 1.0                  | 00            |             |           |             |
|                                           | $1 - (1 - (\frac{Blank 24}{100}))$          | Blank 4)             | x 100         |             | =42.9     | 0 %         |
|                                           |                                             |                      |               |             |           |             |
### AUDIT DATA SHEET MONITORING SOLUTIONS DURAG D-R 290 COMS

| 21       |                     | Primary E   | nergy                                  | E. C      | hicago, IN    | Stack 201      | Page 5 of |
|----------|---------------------|-------------|----------------------------------------|-----------|---------------|----------------|-----------|
| А        | uditor: ſ           | Dan Bowle   | 'S                                     |           | Date:         | 05/05/21       |           |
| S        | iource:             | Primary Fi  | herav                                  |           | Unit:         | Stack 201      |           |
| -        |                     | · ·····     |                                        |           |               |                |           |
| PARAN    | NETER               |             | ······································ | Blank No. | Audit Results | Specification  | s         |
| Error C  | Codes/F             | aults       |                                        |           |               |                |           |
| Blower   | failure             |             |                                        | 7         | NO            | NO             |           |
| Filter B | lockage             |             |                                        | 8         | NO            | NO             |           |
| Windov   | N                   |             |                                        | 9         | NO            | NO             |           |
| Fault    |                     |             |                                        | 10        | NO            | NO             |           |
| SCF C    | orrelati            | on Error    |                                        | 51        | 0.00          | +/- 2% Op      |           |
| Intor    | mal Zar             | o Error     | Display                                | 52        | 0.00          | +/- 4% Op      |           |
| mer      | Internal Zero Error | 0 Error     | Data                                   | 53        | 0.00          | +/- 4% Op      |           |
| Intor    | mal Sna             |             | Display                                | 54        | 0.00          | +/- 4% Op      |           |
| men      | паг эра             | IN EITOI    | Data                                   | 55        | 0.00          | +/- 4% Op      |           |
| Optica   | l Alignr            | nent Ana    | ysis                                   | 21        | YES           | YES = Centere  | ed        |
| Zero C   | Compen              | sation Ch   | eck                                    | 21a       | YES           | YES = Complied | With      |
| Zero A   | lignme              | nt Error    |                                        | 21b       | N/A           | ≤ 2% Op        |           |
| Optica   | al Surfac           | ce Dust A   | ccumulation                            | 1         |               |                |           |
| Retrore  | eflector            |             |                                        | 56        | 0.10          | ≤ 2% Op        |           |
| Transc   | eiver               |             |                                        | 57        | 0.60          | <b>≤</b> 2% Op |           |
| Total    |                     |             |                                        | 58        | 0.70          | l≤ 4% Op       |           |
| Calibra  | ation Er            | rror Analy  | sis                                    |           |               |                |           |
| A        | Arithmet            | ic Mean D   | ifference                              |           |               |                |           |
|          |                     |             |                                        | 62        | 0.40          |                |           |
|          |                     |             |                                        | 71a       | 0.40          |                |           |
|          | ſ                   |             | MID                                    | 63        | 0.00          |                |           |
|          |                     |             | MID                                    | 72a       | 0.00          |                |           |
|          |                     |             | HICH                                   | 64        | 0.02          |                |           |
|          |                     |             | lion                                   | 73a       | 0.10          |                |           |
|          | Confid              | ence Coe    | ffecient                               |           |               |                |           |
|          |                     |             |                                        | 65        | 0.00          |                |           |
|          |                     |             |                                        | 66        | 0.00          |                |           |
|          |                     |             |                                        | 67        | 0.06          |                |           |
|          | Ca                  | libration E | rror                                   |           |               |                |           |
|          |                     |             |                                        | 68        | 0.40          | ≤ 3% Op        |           |
|          |                     |             |                                        | 69        | 0.00          | ≤ 3% Op        |           |
|          |                     |             |                                        | 70        | 0.08          | ≤ 3% Op        |           |

Revision: March, 2016

|                      |                                         | OPACITY LOW FILTER A                                  | AUDIT                          |              |
|----------------------|-----------------------------------------|-------------------------------------------------------|--------------------------------|--------------|
| Primary Ene          | rgy                                     | E. Chicago, IN                                        | Stack 201                      | 5/5/202      |
| LOW<br>FILTER<br>RUN | Opacity Output from<br>Recording Device | Audit Filter Value Corrected for<br>Path Length (SCF) | (FILTER-MONITOR)<br>Difference | Difference^2 |
| non                  |                                         | RM                                                    | (X <sub>i</sub> )              | Xi^2         |
| 1                    | 17.70                                   | 17.30                                                 | 0.40                           | 0.1600       |
| 2                    | 17.70                                   | 17.30                                                 | 0.40                           | 0.1600       |
| 3                    | 17.70                                   | 17.30                                                 | 0.40                           | 0.1600       |
| 4                    | 17.70                                   | 17.30                                                 | 0.40                           | 0.1600       |
| 5                    | 17.70                                   | 17.30                                                 | 0.40                           | 0.1600       |
| n =<br>t(0.975) =    | 5<br>2.776<br>Mean Ref. Method Value    | e 17.3000                                             | <u>RM</u>                      |              |
|                      | Arithmetic Mean Differer                | 2.0000                                                | $\mathbf{V}$                   |              |
|                      | Sum of Differences Sau                  | ared 0.8000                                           | $Y_i \wedge 2$                 |              |
|                      | Standard Deviation                      |                                                       | <u>1</u> Al 2<br>) sd          |              |
|                      | 2.5% Error Conf Coef                    |                                                       | $\frac{1}{2}$ Su               |              |
|                      | Calibration Error                       | 0.4000                                                | ) percent                      |              |

|                      |                                         | OPACITY MID FILTER A                                  | JDIT                           | namenan, <u>2007 <mark>an</mark>ananan, 2007 <mark>ananan, 2007 an</mark></u> an, 2007 anang |  |  |  |  |  |
|----------------------|-----------------------------------------|-------------------------------------------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                      | Accuracy Determination                  |                                                       |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
| Primary Ene          | ergy                                    | E. Chicago, IN                                        | Stack 201                      | 5/5/2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
|                      | 1                                       |                                                       |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
| MID<br>FILTER<br>RUN | Opacity Output from<br>Recording Device | Audit Filter Value Corrected for<br>Path Length (SCF) | (FILTER-MONITOR)<br>Difference | Difference^2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| ĺ                    |                                         | RM                                                    | (X <sub>i</sub> )              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
| 1                    | 24.50                                   | 24.50                                                 | 0.00                           | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| 2                    | 24.50                                   | 24.50                                                 | 0.00                           | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| 3                    | 24.50                                   | 24.50                                                 | 0.00                           | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| 4                    | 24.50                                   | 24.50                                                 | 0.00                           | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| 5                    | 24.50                                   | 24.50                                                 | 0.00                           | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| n =<br>t(0.975) =    | 5<br>2.776<br>Maan Def, Mathed ) (alug  | 04 5000                                               | DM                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
|                      | Sum of Difforences                      | 24.5000                                               | KM<br>V:                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
|                      | Arithmetic Mean Differen                |                                                       | Al<br>Xi ave                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
|                      | Sum of Differences Squa                 | ared 0.0000                                           | Xi uve<br>$Xi^2$               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
|                      | Standard Deviation                      | 0.0000                                                | sd                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
|                      | 2.5% Error Conf.Coef                    | 0.0000                                                | CC                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
|                      | Calibration Error                       | 0.0000                                                | percent                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
|                      |                                         |                                                       | -                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |

|                       |                                         | OPACITY HIGH FILTER A                                 | AUDIT                          |              |
|-----------------------|-----------------------------------------|-------------------------------------------------------|--------------------------------|--------------|
|                       |                                         | Accuracy Determination                                | on                             |              |
| Primary Ene           | ergy                                    | E. Chicago, IN                                        | Stack 201                      | 5/5/2021     |
|                       |                                         |                                                       |                                |              |
| HIGH<br>FILTER<br>RUN | Opacity Output from<br>Recording Device | Audit Filter Value Corrected for<br>Path Length (SCF) | (FILTER-MONITOR)<br>Difference | Difference^2 |
|                       |                                         | ] RM                                                  | (X <sub>i</sub> )              | Xi^2         |
| 1                     | 42.90                                   | 42.90                                                 | 0.00                           | 0.0000       |
| 2                     | 42.90                                   | 42.90                                                 | 0.00                           | 0.0000       |
| 3                     | 42.90                                   | 42.90                                                 | 0.00                           | 0.0000       |
| 4                     | 42.90                                   | 42.90                                                 | 0.00                           | 0.0000       |
| 5                     | 43.00                                   | 42.90                                                 | 0.10                           | 0.0100       |
| n =<br>t(0.975) =     | 5<br>2.776                              |                                                       |                                |              |
|                       | Mean Ref. Method Value                  | e 42.9000                                             | RM                             |              |
|                       | Sum of Differences                      | 0.1000                                                | Xi                             |              |
|                       | Arithmetic Mean Differer                | nce 0.0200                                            | Xi ave                         |              |
|                       | Sum of Differences Squa                 | ared 0.0100                                           | Xi^2                           |              |
|                       | Standard Deviation                      | 0.0447                                                | sd                             |              |
|                       | 2.5% Error Conf.Coef                    | 0.0555                                                | CC                             |              |
|                       | Calibration Error                       | 0.0755                                                | percent                        |              |
|                       |                                         |                                                       |                                |              |

| OPACITY FILTER AUDIT<br>* 6-minute Averages *<br>Accuracy Determination |                                         |                                                       |                                |               |  |  |
|-------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------|--------------------------------|---------------|--|--|
| rimary Ener                                                             | gy                                      | E. Chicago, IN                                        | Stack 201                      | 5/5/2021      |  |  |
| 6<br>Minute<br>Averages                                                 | Opacity Output from<br>Recording Device | Audit Filter Value Corrected for<br>Path Length (SCF) | (FILTER-MONITOR)<br>Difference | Opacity Error |  |  |
|                                                                         |                                         | RM                                                    | (Xi)                           |               |  |  |
| ZERO                                                                    | 0.10                                    | 0.00                                                  | 0.10                           | 0.10          |  |  |
| LOW                                                                     | 17.70                                   | 17.30                                                 | 0.40                           | 0.40          |  |  |
| MID                                                                     | 24.50                                   | 24.50                                                 | 0.00                           | 0.00          |  |  |
| HIGH                                                                    | 43.00                                   | 42.90                                                 | 0.10                           | 0.10          |  |  |
| ZERO                                                                    | 0.10                                    | 0.00                                                  | 0.10                           | 0.10          |  |  |
| <u>ZERO </u>                                                            | <u> </u>                                | 0.00                                                  | 0.10                           | 0.10          |  |  |

| Primary Ene | ergy Coke        |                   |                    | <b>Opacity</b> I   | Report             |                    | Created on : May 05, 2021 09:42:2 |                    |                    | 2021 09:42:27      |
|-------------|------------------|-------------------|--------------------|--------------------|--------------------|--------------------|-----------------------------------|--------------------|--------------------|--------------------|
| East Chicag | jo, IN           |                   |                    | 05/05/2021 - 05/   | /05/2021           | 05/05/2021         |                                   |                    |                    | STACK 201          |
| Hour        | Minutes<br>0 - 5 | Minutes<br>6 - 11 | Minutes<br>12 - 17 | Minutes<br>18 - 23 | Minutes<br>24 - 29 | Minutes<br>30 - 35 | Minutes<br>36 - 41                | Minutes<br>42 - 47 | Minutes<br>48 - 53 | Minutes<br>54 - 59 |
| 0           | 2.3 SVC          | 2.3 SVC           | 2.3 SVC            | 2.2 SVC            | 2.3 SVC            | 2.2 SVC            | 2.5 SVC                           | 2.5 SVC            | 2.4 SVC            | 2.2 SVC            |
| 1           | 2.3 SVC          | 2.2 SVC           | 2.2 SVC            | 2.3 SVC            | 2.4 SVC            | 2.2 SVC            | 2.4 SVC                           | 2.4 SVC            | 2.4 SVC            | 2.4 SVC            |
| 2           | 2.2 SVC          | 2.2 SVC           | 2.5 SVC            | 2.3 SVC            | 2.4 SVC            | 2.6 SVC            | 2.4 SVC                           | 2.5 SVC            | 2.6 SVC            | 2.5 SVC            |
| 3           | 2.8 SVC          | 2.6 SVC           | 2.7 SVC            | 2.9 SVC            | 2.7 SVC            | 2.7 SVC            | 2.8 SVC                           | 2.7 NSA            | 2.8 SVC            | 2.6 SVC            |
| 4           | 2.8 SVC          | 2.8 SVC           | 2.8 SVC            | 2.7 SVC            | 2.7 SVC            | 2.9 SVC            | 2.7 SVC                           | 2.6 SVC            | 2.6 SVC            | 2.3 SVC            |
| 5           | 2.4 SVC          | 2.5 SVC           | 2.4 SVC            | 2.4 SVC            | 2.5 SVC            | 2.5 SVC            | 2.6 SVC                           | 2.5 SVC            | 2.4 SVC            | 2.5 SVC            |
| 6           | 2.2 SVC          | 2.2 SVC           | 2.4 SVC            | 2.4 SVC            | 2.3 SVC            | 2.4 SVC            | 2.3 SVC                           | 2.2 SVC            | 2.3 SVC            | 2.2 SVC            |
| 7           | 2.4 SVC          | 2.4 SVC           | 2.3 SVC            | 2.4 SVC            | 2.4 SVC            | 2.2 SVC            | 2.4 SVC                           | 2.3 SVC            | 2.4 SVC            | 2.5 SVC            |
| 8           | 2.4 NSA          | 2.1 MOS           | 16.6 MOS           | 29.7 MOS           | 4.6 MOS            | 0.1 MOS            | 11.2 MOS                          | 17.7 MOS           | 20.4 MOS           | 24.5 MOS           |
| 9           | 24.5 MOS         | 37.3 MOS          | 43.0 MOS           | 21.7 MOS           | 0.1 MOS            | 1.3 MOS            | 3.8 MOS                           |                    |                    |                    |

Status Code Definitions

MOS = MONITOR OUT OF SERVICE N

NSA = NO SAMPLE AVAILABLE

SVC = MONITOR IN SERVICE

The average OPACITY, % period average for the day was 2.4 % for 79 periods of valid data.

The Fan was in operation for 97 periods

The maximum OPACITY, % period average for the day was 2.9 %

There were 18 periods of invalid data

CEMDAS Evolution<sup>™</sup>



Primary Energy Coke

# **Scans Report**

East Chicago, IN

05/05/2021 08:00 - 05/05/2021 08:30

STACK 201

| 05/05/2021 | OPACITY, % | ) |  |  |  | S. Carlos |  |
|------------|------------|---|--|--|--|-----------|--|
| 08:14      |            |   |  |  |  |           |  |
| 08:14:01   | 0.2 MOS    |   |  |  |  |           |  |
| 08:14:03   | 0.2 MOS    |   |  |  |  |           |  |
| 08:14:05   | 0.2 MOS    |   |  |  |  |           |  |
| 08:14:07   | 0.1 MOS    |   |  |  |  |           |  |
| 08:14:09   | 0.1 MOS    |   |  |  |  |           |  |
| 08:14:11   | 0.1 MOS    |   |  |  |  |           |  |
| 08:14:13   | 4.1 MOS    |   |  |  |  |           |  |
| 08:14:15   | 8.5 MOS    |   |  |  |  |           |  |
| 08:14:17   | 12.9 MOS   |   |  |  |  |           |  |
| 08:14:19   | 17.4 MOS   |   |  |  |  |           |  |
| 08:14:21   | 17.7 MOS   |   |  |  |  |           |  |
| 08:14:23   | 17.7 MOS   |   |  |  |  |           |  |
| 08:14:25   | 17.7 MOS   |   |  |  |  |           |  |
| 08:14:27   | 17.7 MOS   |   |  |  |  |           |  |
| 08:14:29   | 17.7 MOS   |   |  |  |  |           |  |
| 08:14:31   | 17.7 MOS   |   |  |  |  |           |  |
| 08:14:33   | 17.7 MOS   |   |  |  |  |           |  |
| 08:14:35   | 17.7 MOS   |   |  |  |  |           |  |
| 08:14:37   | 17.7 MOS   |   |  |  |  |           |  |
| 08:14:39   | 17.7 MOS   |   |  |  |  |           |  |
| 08:14:41   | 17.7 MOS   |   |  |  |  |           |  |
| 08:14:43   | 17.7 MOS   |   |  |  |  |           |  |
| 08:14:45   | 17.7 MOS   |   |  |  |  |           |  |
| 08:14:47   | 17.7 MOS   |   |  |  |  |           |  |
| 08:14:49   | 17.7 MOS   |   |  |  |  |           |  |
| 08:14:51   | 17.7 MOS   |   |  |  |  |           |  |
| 08:14:53   | 17.7 MOS   |   |  |  |  |           |  |
| 08:14:55   | 13.5 MOS   |   |  |  |  |           |  |
| 08:14:57   | 15.1 MOS   |   |  |  |  |           |  |
| 08:14:59   | 16.8 MOS   |   |  |  |  |           |  |

Status Code Definitions

MOS = MONITOR OUT OF SERVICE

CEMDAS Evolution<sup>™</sup>

Page 15 of 31

East Chicago, IN

05/05/2021 08:00 - 05/05/2021 08:30

STACK 201

| Last Chicago, | <u>11N</u> | 05/05/2021 06:00 - 05/05/2021 06:50 |  |
|---------------|------------|-------------------------------------|--|
| 05/05/2021    | OPACITY %  |                                     |  |
| 08:15         |            |                                     |  |
| 08:15:01      | 18.5 MOS   |                                     |  |
| 08:15:03      | 24.4 MOS   |                                     |  |
| 08:15:05      | 24.5 MOS   |                                     |  |
| 08:15:07      | 24.5 MOS   |                                     |  |
| 08:15:09      | 24.5 MOS   |                                     |  |
| 08:15:11      | 24.5 MOS   |                                     |  |
| 08:15:13      | 24.5 MOS   |                                     |  |
| 08:15:15      | 24.5 MOS   |                                     |  |
| 08:15:17      | 24.5 MOS   |                                     |  |
| 08:15:19      | 24.5 MOS   |                                     |  |
| 08:15:21      | 24.5 MOS   |                                     |  |
| 08:15:23      | 24.5 MOS   |                                     |  |
| 08:15:25      | 24.5 MOS   |                                     |  |
| 08:15:27      | 24.5 MOS   |                                     |  |
| 08:15:29      | 24.5 MOS   |                                     |  |
| 08:15:31      | 24.5 MOS   |                                     |  |
| 08:15:33      | 23.8 MOS   |                                     |  |
| 08:15:35      | 23.9 MOS   |                                     |  |
| 08:15:37      | 27.6 MOS   |                                     |  |
| 08:15:39      | 32.0 MOS   |                                     |  |
| 08:15:41      | 37.3 MOS   |                                     |  |
| 08:15:43      | 42.9 MOS   |                                     |  |
| 08:15:45      | 42.9 MOS   |                                     |  |
| 08:15:47      | 42.9 MOS   |                                     |  |
| 08:15:49      | 42.9 MOS   |                                     |  |
| 08:15:51      | 42.9 MOS   |                                     |  |
| 08:15:53      | 42.9 MOS   |                                     |  |
| 08:15:55      | 42.9 MOS   |                                     |  |

Status Code Definitions

MOS = MONITOR OUT OF SERVICE

42.9 MOS 42.9 MOS

08:15:57

08:15:59

Primary Energy Coke

# **Scans Report**

East Chicago, IN

05/05/2021 08:00 - 05/05/2021 08:30

STACK 201

| 05/05/2021 | OPAC | ITY, % |   |  |
|------------|------|--------|---|--|
| 08:16      |      |        |   |  |
| 08:16:01   | 42.9 | MOS    |   |  |
| 08:16:03   | 42.9 | MOS    |   |  |
| 08:16:05   | 42.9 | MOS    |   |  |
| 08:16:07   | 42.9 | MOS    |   |  |
| 08:16:09   | 42.9 | MOS    | 9 |  |
| 08:16:11   | 42.9 | MOS    |   |  |
| 08:16:13   | 42.9 | MOS    |   |  |
| 08:16:15   | 42.9 | MOS    |   |  |
| 08:16:17   | 42.9 | MOS    |   |  |
| 08:16:19   | 40.3 | MOS    |   |  |
| 08:16:21   | 31.7 | MOS    |   |  |
| 08:16:23   | 25.4 | MOS    |   |  |
| 08:16:26   | 19.1 | MOS    |   |  |
| 08:16:28   | 15.4 | MOS    |   |  |
| 08:16:30   | 17.7 | MOS    |   |  |
| 08:16:32   | 17.7 | MOS    |   |  |
| 08:16:34   | 17.7 | MOS    |   |  |
| 08:16:36   | 17.7 | MOS    |   |  |
| 08:16:38   | 17.7 | MOS    |   |  |
| 08:16:40   | 17.7 | MOS    |   |  |
| 08:16:42   | 17.7 | MOS    |   |  |
| 08:16:44   | 17.7 | MOS    |   |  |
| 08:16:46   | 17.7 | MOS    |   |  |
| 08:16:48   | 17.7 | MOS    |   |  |
| 08:16:50   | 17.7 | MOS    |   |  |
| 08:16:52   | 17.7 | MOS    |   |  |
| 08:16:54   | 17.7 | MOS    |   |  |
| 08:16:56   | 16.7 | MOS    |   |  |
| 08:16:58   | 15.4 | MOS    |   |  |

Status Code Definitions

East Chicago, IN

05/05/2021 08:00 - 05/05/2021 08:30

STACK 201

| 05/05/2021 | OPACITY, % |  |
|------------|------------|--|
| 08:17      |            |  |
| 08:17:00   | 17.1 MOS   |  |
| 08:17:02   | 19.2 MOS   |  |
| 08:17:04   | 22.4 MOS   |  |
| 08:17:06   | 24.5 MOS   |  |
| 08:17:08   | 24.5 MOS   |  |
| 08:17:10   | 24.5 MOS   |  |
| 08:17:12   | 24.5 MOS   |  |
| 08:17:14   | 24.5 MOS   |  |
| 08:17:16   | 24.5 MOS   |  |
| 08:17:18   | 24.5 MOS   |  |
| 08:17:20   | 24.5 MOS   |  |
| 08:17:22   | 24.5 MOS   |  |
| 08:17:24   | 24.5 MOS   |  |
| 08:17:26   | 24.5 MOS   |  |
| 08:17:28   | 24.5 MOS   |  |
| 08:17:30   | 24.5 MOS   |  |
| 08:17:32   | 24.5 MOS   |  |
| 08:17:34   | 20.1 MOS   |  |
| 08:17:36   | 22.2 MOS   |  |
| 08:17:38   | 26.8 MOS   |  |
| 08:17:40   | 31.3 MOS   |  |
| 08:17:42   | 37.8 MOS   |  |
| 08:17:44   | 42.9 MOS   |  |
| 08:17:46   | 42.9 MOS   |  |
| 08:17:48   | 42.9 MOS   |  |
| 08:17:50   | 42.9 MOS   |  |
| 08:17:52   | 42.9 MOS   |  |
| 08:17:54   | 42.9 MOS   |  |
| 08:17:56   | 42.9 MOS   |  |
| 08:17:58   | 42.9 MOS   |  |

Status Code Definitions

Primary Energy Coke

# **Scans Report**

East Chicago, IN

05/05/2021 08:00 - 05/05/2021 08:30

STACK 201

| 05/05/2021 | OPACITY | Y, % |  |
|------------|---------|------|--|
| 08:18      |         |      |  |
| 08:18:00   | 42.9 N  | 10S  |  |
| 08:18:02   | 42.9 N  | 10S  |  |
| 08:18:04   | 42.9 N  | 10S  |  |
| 08:18:06   | 43.0 N  | IOS  |  |
| 08:18:08   | 42.9 N  | IOS  |  |
| 08:18:10   | 43.0 N  | IOS  |  |
| 08:18:12   | 42.9 N  | IOS  |  |
| 08:18:14   | 43.0 N  | 10S  |  |
| 08:18:16   | 43.0 N  | IOS  |  |
| 08:18:18   | 43.0 N  | IOS  |  |
| 08:18:20   | 43.0 N  | IOS  |  |
| 08:18:22   | 41.8 N  | 10S  |  |
| 08:18:24   | 32.7 N  | 10S  |  |
| 08:18:26   | 24.8 N  | IOS  |  |
| 08:18:28   | 18.5 N  | 10S  |  |
| 08:18:30   | 15.8 N  | 10S  |  |
| 08:18:32   | 17.7 N  | 10S  |  |
| 08:18:34   | 17.7 N  | 10S  |  |
| 08:18:36   | 17.8 N  | 10S  |  |
| 08:18:38   | 17.7 N  | 10S  |  |
| 08:18:40   | 17.7 N  | 10S  |  |
| 08:18:42   | 17.7 N  | 10S  |  |
| 08:18:44   | 17.7 N  | 10S  |  |
| 08:18:46   | 17.7 N  | 10S  |  |
| 08:18:48   | 17.7 N  | IOS  |  |
| 08:18:50   | 17.7 N  | 105  |  |
| 08:18:52   | 17.7 N  | 10S  |  |
| 08:18:54   | 17.7 N  | 105  |  |
| 08:18:56   | 17.7 N  | 105  |  |
| 08:18:58   | 16.7 N  | 105  |  |

Status Code Definitions

East Chicago, IN

05/05/2021 08:00 - 05/05/2021 08:30

STACK 201

| 05/05/2021 | OPACITY, % |  |  |
|------------|------------|--|--|
| 08:19      |            |  |  |
| 08:19:00   | 16.3 MOS   |  |  |
| 08:19:02   | 18.0 MOS   |  |  |
| 08:19:04   | 19.7 MOS   |  |  |
| 08:19:07   | 22.4 MOS   |  |  |
| 08:19:09   | 24.5 MOS   |  |  |
| 08:19:11   | 24.5 MOS   |  |  |
| 08:19:13   | 24.5 MOS   |  |  |
| 08:19:15   | 24.5 MOS   |  |  |
| 08:19:17   | 24.5 MOS   |  |  |
| 08:19:19   | 24.5 MOS   |  |  |
| 08:19:21   | 24.5 MOS   |  |  |
| 08:19:23   | 24.5 MOS   |  |  |
| 08:19:25   | 24.5 MOS   |  |  |
| 08:19:27   | 24.5 MOS   |  |  |
| 08:19:29   | 24.5 MOS   |  |  |
| 08:19:31   | 24.5 MOS   |  |  |
| 08:19:33   | 24.5 MOS   |  |  |
| 08:19:35   | 21.7 MOS   |  |  |
| 08:19:37   | 22.1 MOS   |  |  |
| 08:19:39   | 26.7 MOS   |  |  |
| 08:19:41   | 30.3 MOS   |  |  |
| 08:19:43   | 37.5 MOS   |  |  |
| 08:19:45   | 42.9 MOS   |  |  |
| 08:19:47   | 42.9 MOS   |  |  |
| 08:19:49   | 42.9 MOS   |  |  |
| 08:19:51   | 42.9 MOS   |  |  |
| 08:19:53   | 43.0 MOS   |  |  |
| 08:19:55   | 43.0 MOS   |  |  |
| 08:19:57   | 42.9 MOS   |  |  |
| 08:19:59   | 42.9 MOS   |  |  |

Status Code Definitions

Primary Energy Coke

# Scans Report

East Chicago, IN

05/05/2021 08:00 - 05/05/2021 08:30

STACK 201

| 05/05/2021 | OPACIT | Υ, % |  |  |  |
|------------|--------|------|--|--|--|
| 08:20      |        |      |  |  |  |
| 08:20:01   | 42.9   | MOS  |  |  |  |
| 08:20:03   | 42.9   | MOS  |  |  |  |
| 08:20:05   | 42.9   | MOS  |  |  |  |
| 08:20:07   | 42.9   | MOS  |  |  |  |
| 08:20:09   | 42.9   | MOS  |  |  |  |
| 08:20:11   | 35.2   | MOS  |  |  |  |
| 08:20:13   | 28.2   | MOS  |  |  |  |
| 08:20:15   | 21.9   | MOS  |  |  |  |
| 08:20:17   | 16.4   | MOS  |  |  |  |
| 08:20:19   | 17.1   | MOS  |  |  |  |
| 08:20:21   | 17.7   | MOS  |  |  |  |
| 08:20:23   | 17.7   | MOS  |  |  |  |
| 08:20:25   | 17.7   | MOS  |  |  |  |
| 08:20:27   | 17.7   | MOS  |  |  |  |
| 08:20:29   | 17.7   | MOS  |  |  |  |
| 08:20:31   | 17.7   | MOS  |  |  |  |
| 08:20:33   | 17.7   | MOS  |  |  |  |
| 08:20:35   | 17.7   | MOS  |  |  |  |
| 08:20:37   | 17.7   | MOS  |  |  |  |
| 08:20:39   | 17.7   | MOS  |  |  |  |
| 08:20:41   | 15.2   | MOS  |  |  |  |
| 08:20:43   | 16.8   | MOS  |  |  |  |
| 08:20:45   | 18.5   | MOS  |  |  |  |
| 08:20:47   | 20.2   | MOS  |  |  |  |
| 08:20:49   | 24.4   | MOS  |  |  |  |
| 08:20:51   | 24.5   | MOS  |  |  |  |
| 08:20:53   | 24.5   | MOS  |  |  |  |
| 08:20:55   | 24.5   | MOS  |  |  |  |
| 08:20:57   | 24.5   | MOS  |  |  |  |
| 08:20:59   | 24.5   | MOS  |  |  |  |

Status Code Definitions

East Chicago, IN

### 05/05/2021 08:00 - 05/05/2021 08:30

STACK 201

| 05/05/2021 | OPACITY, % |  |      |  | 12430-019 |
|------------|------------|--|------|--|-----------|
| 08:21      |            |  |      |  |           |
| 08:21:01   | 24.5 MOS   |  |      |  |           |
| 08:21:03   | 24.5 MOS   |  |      |  |           |
| 08:21:05   | 24.5 MOS   |  |      |  |           |
| 08:21:07   | 24.5 MOS   |  |      |  |           |
| 08:21:09   | 24.5 MOS   |  |      |  |           |
| 08:21:11   | 24.5 MOS   |  |      |  |           |
| 08:21:13   | 21.6 MOS   |  |      |  |           |
| 08:21:15   | 20.8 MOS   |  |      |  |           |
| 08:21:17   | 26.6 MOS   |  |      |  |           |
| 08:21:19   | 31.2 MOS   |  |      |  |           |
| 08:21:21   | 40.2 MOS   |  |      |  |           |
| 08:21:23   | 43.0 MOS   |  |      |  |           |
| 08:21:25   | 43.0 MOS   |  |      |  |           |
| 08:21:27   | 43.0 MOS   |  |      |  |           |
| 08:21:29   | 42.9 MOS   |  |      |  |           |
| 08:21:31   | 43.0 MOS   |  |      |  |           |
| 08:21:33   | 43.0 MOS   |  |      |  |           |
| 08:21:35   | 43.0 MOS   |  |      |  |           |
| 08:21:37   | 43.0 MOS   |  |      |  |           |
| 08:21:39   | 43.0 MOS   |  |      |  |           |
| 08:21:41   | 43.0 MOS   |  |      |  |           |
| 08:21:43   | 43.0 MOS   |  |      |  |           |
| 08:21:45   | 43.0 MOS   |  | 84 I |  |           |
| 08:21:47   | 43.0 MOS   |  |      |  |           |
| 08:21:50   | 43.0 MOS   |  |      |  |           |
| 08:21:52   | 43.0 MOS   |  |      |  |           |
| 08:21:54   | 42.9 MOS   |  |      |  |           |
| 08:21:56   | 42.9 MOS   |  |      |  |           |
| 08:21:58   | 42.9 MOS   |  |      |  |           |

Status Code Definitions

East Chicago, IN

05/05/2021 08:00 - 05/05/2021 08:30

STACK 201

| 05/05/2021 | OPACIT        | Y, % |   |
|------------|---------------|------|---|
| 08:22      |               |      |   |
| 08:22:00   | 42.9          | MOS  |   |
| 08:22:02   | 42.9          | MOS  |   |
| 08:22:04   | 42.9          | MOS  |   |
| 08:22:06   | 42.9          | MOS  |   |
| 08:22:08   | 42.9          | MOS  | 4 |
| 08:22:10   | 42.9          | MOS  |   |
| 08:22:12   | 42.9          | MOS  |   |
| 08:22:14   | 42.9          | MOS  |   |
| 08:22:16   | 42.9          | MOS  |   |
| 08:22:18   | 43.0 I        | MOS  |   |
| 08:22:20   | 43.0          | MOS  |   |
| 08:22:22   | 43.0          | MOS  |   |
| 08:22:24   | 43.0 I        | MOS  |   |
| 08:22:26   | 40.0          | MOS  |   |
| 08:22:28   | 30.4          | MOS  |   |
| 08:22:30   | 22.5 I        | MOS  |   |
| 08:22:32   | 16.2 I        | MOS  |   |
| 08:22:34   | 15.4 I        | MOS  |   |
| 08:22:36   | 17.7 I        | MOS  |   |
| 08:22:38   | 17.7 I        | MOS  |   |
| 08:22:40   | 17.7          | MOS  |   |
| 08:22:42   | 17.8          | MOS  |   |
| 08:22:44   | 17.7 I        | MOS  |   |
| 08:22:46   | 17.8          | MOS  |   |
| 08:22:48   | 17.8          | MOS  |   |
| 08:22:50   | 17.8          | MOS  |   |
| 08:22:52   | 17.7          | MOS  |   |
| 08:22:54   | 17.7 <b>I</b> | MOS  |   |
| 08:22:56   | 17.8          | MOS  |   |
| 08:22:58   | 17.7 N        | MOS  |   |

Status Code Definitions

MOS = MONITOR OUT OF SERVICE

.

East Chicago, IN

05/05/2021 08:00 - 05/05/2021 08:30

STACK 201

| 05/05/2021 | OPACITY, % | a second second |
|------------|------------|-----------------|
| 08:23      |            |                 |
| 08:23:00   | 17.7 MOS   |                 |
| 08:23:02   | 15.8 MOS   |                 |
| 08:23:04   | 16.3 MOS   |                 |
| 08:23:06   | 17.9 MOS   |                 |
| 08:23:08   | 19.6 MOS   |                 |
| 08:23:10   | 23.3 MOS   |                 |
| 08:23:12   | 24.5 MOS   |                 |
| 08:23:14   | 24.5 MOS   |                 |
| 08:23:16   | 24.5 MOS   |                 |
| 08:23:18   | 24.5 MOS   |                 |
| 08:23:20   | 24.5 MOS   |                 |
| 08:23:22   | 24.5 MOS   |                 |
| 08:23:24   | 24.5 MOS   |                 |
| 08:23:26   | 24.5 MOS   |                 |
| 08:23:28   | 24.5 MOS   |                 |
| 08:23:30   | 23.2 MOS   |                 |
| 08:23:32   | 22.4 MOS   |                 |
| 08:23:34   | 27.0 MOS   |                 |
| 08:23:36   | 31.6 MOS   |                 |
| 08:23:38   | 40.2 MOS   |                 |
| 08:23:40   | 43.0 MOS   |                 |
| 08:23:42   | 43.0 MOS   |                 |
| 08:23:44   | 43.0 MOS   |                 |
| 08:23:46   | 43.0 MOS   |                 |
| 08:23:48   | 43.0 MOS   |                 |
| 08:23:50   | 43.0 MOS   |                 |
| 08:23:52   | 43.0 MOS   |                 |
| 08:23:54   | 43.0 MOS   |                 |
| 08:23:56   | 43.0 MOS   |                 |
| 08:23:58   | 37.7 MOS   |                 |

Status Code Definitions

| East Chicago, IN |       | 05/05/2021 08:00 - 05/05/2021 08:30                                                                                             | STACK 201 |
|------------------|-------|---------------------------------------------------------------------------------------------------------------------------------|-----------|
|                  |       |                                                                                                                                 |           |
| 05/05/2021       | OPACI | <b>'Y, %</b> http://www.energien.energien.energien.energien.energien.energien.energien.energien.energien.energien.energien.<br> |           |
| 08:24            |       |                                                                                                                                 |           |
| 08:24:00         | 30.3  | MOS                                                                                                                             |           |
| 08:24:02         | 25.2  | MOS                                                                                                                             |           |
| 08:24:04         | 19.3  | MOS                                                                                                                             |           |
| 08:24:06         | 15.5  | MOS                                                                                                                             |           |
| 08:24:08         | 17.7  | MOS                                                                                                                             |           |
| 08:24:10         | 17.7  | MOS                                                                                                                             |           |
| 08:24:12         | 17.7  | MOS                                                                                                                             |           |
| 08:24:14         | 17.7  | MOS                                                                                                                             |           |
| 08:24:16         | 17.7  | MOS                                                                                                                             |           |
| 08:24:18         | 17.7  | MOS                                                                                                                             |           |
| 08:24:20         | 17.0  | MOS                                                                                                                             |           |
| 08:24:22         | 15.9  | MOS                                                                                                                             |           |
| 08:24:24         | 17.6  | MOS                                                                                                                             |           |
| 08:24:26         | 19.3  | MOS                                                                                                                             |           |
| 08:24:28         | 22.4  | MOS                                                                                                                             |           |
| 08:24:30         | 24.5  | MOS                                                                                                                             |           |
| 08:24:33         | 24.5  | MOS                                                                                                                             |           |
| 08:24:35         | 24.5  | MOS                                                                                                                             |           |
| 08:24:37         | 24.5  | MOS                                                                                                                             |           |
| 08:24:39         | 20.0  | MOS                                                                                                                             |           |
| 08:24:41         | 24.1  | MOS                                                                                                                             |           |
| 08:24:43         | 28,7  | MOS                                                                                                                             |           |
| 08:24:45         | 33.4  | MOS                                                                                                                             |           |
| 08:24:47         | 42.5  | MOS                                                                                                                             |           |
| 08:24:49         | 43.0  | MOS                                                                                                                             |           |
| 08:24:51         | 43.0  | MOS                                                                                                                             |           |
| 08:24:53         | 43.0  | MOS                                                                                                                             |           |
| 08:24:55         | 43.0  | MOS                                                                                                                             |           |
| 08:24:57         | 43.0  | MOS                                                                                                                             |           |

Status Code Definitions

MOS = MONITOR OUT OF SERVICE

36.3 MOS

08:24:59

East Chicago, IN

05/05/2021 08:00 - 05/05/2021 08:30

STACK 201

| <u>Lust Officugo</u> ; |       |       |  |
|------------------------|-------|-------|--|
| 05/05/2021             | OPACI | TY, % |  |
| 08:25                  |       |       |  |
| 08:25:01               | 25.6  | MOS   |  |
| 08:25:03               | 14.9  | MOS   |  |
| 08:25:05               | 1.5   | MOS   |  |
| 08:25:07               | 0.1   | MOS   |  |
| 08:25:09               | 0.1   | MOS   |  |
| 08:25:11               | 0.1   | MOS   |  |
| 08:25:13               | 0.1   | MOS   |  |
| 08:25:15               | 0.1   | MOS   |  |
| 08:25:17               | 0.1   | MOS   |  |
| 08:25:19               | 0.1   | MOS   |  |
| 08:25:21               | 0.1   | MOS   |  |
| 08:25:23               | 0.1   | MOS   |  |
| 08:25:25               | 0.1   | MOS   |  |
| 08:25:27               | 0.1   | MOS   |  |
| 08:25:29               | 0.1   | MOS   |  |
| 08:25:31               | 0.1   | MOS   |  |
| 08:25:33               | 0.1   | MOS   |  |
| 08:25:35               | 0.1   | MOS   |  |
| 08:25:37               | 0.1   | MOS   |  |
| 08:25:39               | 0.1   | MOS   |  |
| 08:25:41               | 0.1   | MOS   |  |
| 08:25:43               | 0.1   | MOS   |  |
| 08:25:45               | 0.1   | MOS   |  |
| 08:25:47               | 0.1   | MOS   |  |
| 08:25:49               | 0.1   | i MOS |  |
| 08:25:51               | 0.1   | I MOS |  |
| 08:25:53               | 0.1   | I MOS |  |
| 08:25:55               | 0.1   | I MOS |  |

Status Code Definitions

MOS = MONITOR OUT OF SERVICE

0.1 MOS

0.1 MOS

08:25:57

08:25:59

East Chicago, IN

05/05/2021 08:00 - 05/05/2021 08:30

STACK 201

| 05/05/2021 | OPAC | ΙΤΥ. % |
|------------|------|--------|
| 08:26      |      |        |
| 08:26:01   | 0.1  | MOS    |
| 08:26:03   | 0.1  | MOS    |
| 08:26:05   | 0.1  | MOS    |
| 08:26:07   | 0.1  | MOS    |
| 08:26:09   | 0.1  | MOS    |
| 08:26:11   | 0.1  | MOS    |
| 08:26:13   | 0.1  | MOS    |
| 08:26:15   | 0.1  | MOS    |
| 08:26:17   | 0.1  | MOS    |
| 08:26:19   | 0.1  | MOS    |
| 08:26:21   | 0.1  | MOS    |
| 08:26:23   | 0.1  | MOS    |
| 08:26:25   | 0.1  | MOS    |
| 08:26:27   | 0.1  | MOS    |
| 08:26:29   | 0.1  | MOS    |
| 08:26:31   | 0.1  | MOS    |
| 08:26:33   | 0.1  | MOS    |
| 08:26:35   | 0,1  | MOS    |
| 08:26:37   | 0.1  | MOS    |
| 08:26:39   | 0.1  | MOS    |
| 08:26:41   | 0.1  | MOS    |
| 08:26:43   | 0.1  | MOS    |
| 08:26:45   | 0.1  | MOS    |
| 08:26:47   | 0.1  | MOS    |
| 08:26:49   | 0.1  | MOS    |
| 08:26:51   | 0.1  | MOS    |
| 08:26:53   | 0.1  | MOS    |
| 08:26:55   | 0.1  | MOS    |
| 08:26:57   | 0.1  | MOS    |

Status Code Definitions

MOS = MONITOR OUT OF SERVICE

0.1 MOS

08:26:59

### 05/05/2021 08:00 - 05/05/2021 08:30

STACK 201

| East Chic | cago, IN |
|-----------|----------|
|           |          |

| 05/05/2021 | OPACI | ΓΥ, % |  |  |  |
|------------|-------|-------|--|--|--|
| 08:27      |       |       |  |  |  |
| 08:27:01   | 0.1   | MOS   |  |  |  |
| 08:27:03   | 0.1   | MOS   |  |  |  |
| 08:27:05   | 0.1   | MOS   |  |  |  |
| 08:27:07   | 0.1   | MOS   |  |  |  |
| 08:27:09   | 0.1   | MOS   |  |  |  |
| 08:27:11   | 0.1   | MOS   |  |  |  |
| 08:27:14   | 0.1   | MOS   |  |  |  |
| 08:27:16   | 0.1   | MOS   |  |  |  |
| 08:27:18   | 0.1   | MOS   |  |  |  |
| 08:27:20   | 0.1   | MOS   |  |  |  |
| 08:27:22   | 0.1   | MOS   |  |  |  |
| 08:27:24   | 0.1   | MOS   |  |  |  |
| 08:27:26   | 0.1   | MOS   |  |  |  |
| 08:27:28   | 0.1   | MOS   |  |  |  |
| 08:27:30   | 0.1   | MOS   |  |  |  |
| 08:27:32   | 0.1   | MOS   |  |  |  |
| 08:27:34   | 0.1   | MOS   |  |  |  |
| 08:27:36   | 0.1   | MOS   |  |  |  |
| 08:27:38   | 0.1   | MOS   |  |  |  |
| 08:27:40   | 0.1   | MOS   |  |  |  |
| 08:27:42   | 0.1   | MOS   |  |  |  |
| 08:27:44   | 0.1   | MOS   |  |  |  |
| 08:27:46   | 0.1   | MOS   |  |  |  |
| 08:27:48   | 0.1   | MOS   |  |  |  |
| 08:27:50   | 0.1   | MOS   |  |  |  |
| 08:27:52   | 0.1   | MOS   |  |  |  |
| 08:27:54   | 0.1   | MOS   |  |  |  |
| 08:27:56   | 0.1   | MOS   |  |  |  |
| 08:27:58   | 0.1   | MOS   |  |  |  |

Status Code Definitions

| East Chicago | IN         | 05/05/2021 08:00 - 05/05/2021 08:30 | STACK 201 |
|--------------|------------|-------------------------------------|-----------|
| 05/05/2021   | OPACITY, % |                                     |           |
| 08:28        | •          |                                     |           |
| 08:28:00     | 0.1 MOS    |                                     |           |
| 08:28:02     | 0.1 MOS    |                                     |           |
| 08:28:04     | 0.1 MOS    |                                     |           |
| 08:28:06     | 0.1 MOS    |                                     |           |
| 08:28:08     | 0.1 MOS    |                                     |           |
| 08:28:10     | 0.1 MOS    |                                     |           |
| 08:28:12     | 0.1 MOS    |                                     |           |
| 08:28:14     | 0.1 MOS    |                                     |           |
| 08:28:16     | 0.1 MOS    |                                     |           |
| 08:28:18     | 0.1 MOS    |                                     |           |
| 08:28:20     | 0.1 MOS    |                                     |           |
| 08:28:22     | 0.1 MOS    |                                     |           |
| 08:28:24     | 0.1 MOS    |                                     |           |
| 08:28:26     | 0.1 MOS    |                                     |           |
| 08:28:28     | 0.1 MOS    |                                     |           |
| 08:28:30     | 0.1 MOS    |                                     |           |
| 08:28:32     | 0.1 MOS    |                                     |           |
| 08:28:34     | 0.1 MOS    |                                     |           |
| 08:28:36     | 0.1 MOS    |                                     |           |
| 08:28:38     | 0.1 MOS    |                                     |           |
| 08:28:40     | 0.1 MOS    |                                     |           |
| 08:28:42     | 0.1 MOS    |                                     |           |
| 08:28:44     | 0.1 MOS    |                                     |           |
| 08:28:46     | 0.1 MOS    |                                     |           |
| 08:28:48     | 0.1 MOS    |                                     |           |
| 08:28:50     | 0.1 MOS    |                                     |           |
| 08:28:52     | 0.1 MOS    |                                     |           |
| 08:28:54     | 0.1 MOS    |                                     |           |

Status Code Definitions

MOS = MONITOR OUT OF SERVICE

0.1 MOS

0.1 MOS

08:28:56

08:28:58

Primary Energy Coke

# **Scans Report**

| East Chicago | , IN  |       | 05/05/2021 08:00 - 05/05/2021 08:30 | STACK 201 |
|--------------|-------|-------|-------------------------------------|-----------|
|              |       |       |                                     |           |
| 05/05/2021   | OPACI | ΙΥ, % |                                     |           |
| 08:29        | ~ ~ ~ |       |                                     |           |
| 08:29:00     | 0.1   | MOS   |                                     |           |
| 08:29:02     | 0.1   | MUS   |                                     |           |
| 08:29:04     | 0.1   | MOS   |                                     |           |
| 08:29:06     | 0.1   | MOS   |                                     |           |
| 08:29:08     | 0.1   | MOS   |                                     |           |
| 08:29:10     | 0.1   | MOS   |                                     |           |
| 08:29:12     | 0.1   | MOS   |                                     |           |
| 08:29:14     | 0.1   | MOS   |                                     |           |
| 08:29:16     | 0.1   | MOS   |                                     |           |
| 08:29:18     | 0.1   | MOS   |                                     |           |
| 08:29:20     | 0.1   | MOS   |                                     |           |
| 08:29:22     | 0.1   | MOS   |                                     |           |
| 08:29:24     | 0.1   | MOS   |                                     |           |
| 08:29:26     | 0.1   | MOS   |                                     |           |
| 08:29:28     | 0.1   | MOS   |                                     |           |
| 08:29:30     | 0.1   | MOS   |                                     |           |
| 08:29:32     | 0.1   | MOS   |                                     |           |
| 08:29:34     | 0.1   | MOS   |                                     |           |
| 08:29:36     | 0.1   | MOS   |                                     |           |
| 08:29:38     | 0.1   | MOS   |                                     |           |
| 08:29:40     | 0.1   | MOS   |                                     |           |
| 08:29:42     | 0.1   | MOS   |                                     |           |
| 08:29:44     | 0.1   | MOS   |                                     |           |
| 08:29:46     | 0,1   | MOS   |                                     |           |
| 08:29:48     | 0.1   | MOS   |                                     |           |
| 08:29:50     | 0.1   | MOS   |                                     |           |
| 08:29:52     | 0.1   | MOS   |                                     |           |
| 08:29:54     | 0.1   | MOS   |                                     |           |
| 08:29:57     | 0.1   | MOS   |                                     |           |
| 08:29:59     | 0.1   | MOS   |                                     |           |

Status Code Definitions

### East Chicago, IN

### 05/05/2021 08:00 - 05/05/2021 08:30

STACK 201

| 05/05/2021 | OPAC | TY, % | <u> Managana</u> | es protectes | <u>Al-A</u> destai |  |      |      |  |  |
|------------|------|-------|------------------|--------------|--------------------|--|------|------|--|--|
| 08:30      |      |       |                  |              |                    |  | <br> | <br> |  |  |
| 08:30:01   | 0.1  | MOS   |                  |              |                    |  |      |      |  |  |
| 08:30:03   | 0.1  | MOS   |                  |              |                    |  |      |      |  |  |
| 08:30:05   | 0.1  | MOS   |                  |              |                    |  |      |      |  |  |
| 08:30:07   | 0.1  | MOS   |                  |              |                    |  |      |      |  |  |
| 08:30:09   | 0.1  | MOS   |                  |              |                    |  |      |      |  |  |
| 08:30:11   | 0.1  | MOS   |                  |              |                    |  |      |      |  |  |

Status Code Definitions

~

### APPENDIX B AUDIT FILTER CERTIFICATION SHEETS



# Leaders in Environmental Monitoring Systems & Services

4404 Guion Rd., Indianapolis, Indiana 46254 Tel: 317.856.9400

# **REPORT OF CERTIFICATION OF NEUTRAL DENSITY AUDIT FILTERS**

| Date of Filter Certification:<br>Date of Filter Expiration: | February 28, 2021<br>August 28, 2021 | Filter Set - E         |
|-------------------------------------------------------------|--------------------------------------|------------------------|
| Audit Device / Filter Slot Ar                               | gle of incidence                     | 10 Degrees             |
| Path-Length Correction                                      |                                      | 1.000 (Straight Stack) |
|                                                             |                                      |                        |

### Table 1: Individual Filter Certification Data

| Serial    | Serial Opacity |           | Previous    | Change in   |  |
|-----------|----------------|-----------|-------------|-------------|--|
| Number    | Value (%)      | (%)       | Opacity (%) | Opacity (%) |  |
| V184      | 8.3            | 91.7      | 8.3         | 0.0         |  |
| YLO5 17.3 |                | . 82.7    | 17.4        | 0.1         |  |
| YX58 24 5 |                | 24.5 75.5 | 24.4        | 0.1         |  |
| ZQ15 42.9 |                | 57.1      | 42.9        | 0.0         |  |
| YF64 59.0 |                | 41.0      | 59.0        | 0.0         |  |
| YF67      | 86.6           | 13.4      | 86.7        | 0.1         |  |

Laboratory-Based Transmissometer Operator

\*See second page for Instrument Information and Details of Certification\*

# ATTACHMENT 2

Third Quarter 2021 Deviation and Compliance Monitoring Report



Cokenergy LLC

3210 Watling Street MC 2-991 East Chicago, IN 46312

Via UPS

October 26, 2021

Indiana Department of Environmental Management Compliance and Enforcement Branch Office of Air Quality 100 N. Senate Avenue Mail Code 61-50, IGCN 1003 Indianapolis, IN 46204 - 2251

RE: Cokenergy, LLC Quarterly Report – Third Quarter 2021 Part 70 Permit No. T089-41033-00383 & T089-43724-00383

To Whom It May Concern:

In accordance with sections C.19 and D.1.14 of the subject permit, 326 IAC 3-5-5 and 326 IAC 3-5-7, we have enclosed the third quarter 2021 reports for the Cokenergy, LLC facility. This report includes:

- Part 70 Quarterly Report Certification
- Part 70 Quarterly Deviation and Compliance Report
- CEMS Excess Emissions Report
- CEMS Downtime Report
- CEMS Third Quarter 2021 Cylinder Gas Audit
- COMS Third Quarter 2021 Opacity Monitor Audit

If you have any questions concerning this data, please call Luke Ford at (219) 397-4626.

Sincerely,

the acheson

Seth Acheson General Manager Cokenergy LLC

Enclosure cc: Luke Ford (scan via email) Cliff Yukawa IDEM (scan via email)

File: X:\\ 615.4

### INDIANA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT OFFICE OF AIR MANAGEMENT COMPLIANCE AND ENFORCEMENT SECTION PART 70 OPERATING PERMIT CERTIFICATION

Source Name: Cokenergy, LLC - a contractor of Cleveland-Cliffs Steel LLC

Source Address: 3210 Watling Street, MC 2-991, East Chicago, Indiana 46312-1610

Part 70 Permit No.: T089-41033-00383 & T089-43724-00383

This certification shall be included when submitting monitoring, testing reports/results or other documents as required by this permit.

Please check what document is being certified:

□ Annual Compliance Certification Letter

I Test Result (specify) 3rd Quarter 2021 COMS Performance Opacity Audit & Cylinder Gas Audit

Report (specify) 3rd Quarter 2021 Deviation and Compliance Monitoring Report

Notification (specify)

Affidavít (specify) \_\_\_\_\_\_

Other (specify)

I certify that, based on information and belief formed after reasonable inquiry, the statements and information in the document are true, accurate, and complete.

| Signature:      | Sett acheson                    |
|-----------------|---------------------------------|
| Printed Name:   | Seth Acheson                    |
| Title/Position: | General Manager, Cokenergy, LLC |
| Phone:          | (219) 397-4521                  |
| Date:           | October 26, 2021                |
|                 |                                 |

| INDIANA DEPARTMENT OF ENVIRONMENTAL<br>OFFICE OF AIR QUALITY<br>COMPLIANCE AND ENFORCEMENT B<br>PART 70 OPERATING PERMIT<br>QUARTERLY DEVIATION AND COMPLIANCE MON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MANAGEMENT<br>RANCH<br>NITORING REPORT                                                                                                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Source Name:Cokenergy, LLC - a contractor of Cleveland-Cliffs SteelSource Address:3210 Watling Street, MC 2-991, East Chicago, IndianaPart 70 Permit No.T089-41033-00383                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LLC<br>46312-1610                                                                                                                                                                                  |
| Months: July to September Year: 2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Page 1 of 2                                                                                                                                                                                        |
| This report shall be submitted quarterly based on a calendar year. Any deviation<br>each deviation, the probable cause of the deviation, and the response steps tak<br>required to be reported by an applicable requirement shall be reported accordin<br>requirement and do not need to be included in this report. Additional pages may<br>occurred, please specily in the box marked "No deviations occurred this reporting the section of the box marked "No deviations occurred the section of the box marked "No deviations occurred the section of the box marked "No deviations occurred the section of the box marked "No deviations occurred the section of the box marked "No deviations occurred the section of the box marked "No deviations occurred the section of the box marked "No deviations occurred the section of the box marked "No deviations occurred the section of the box marked "No deviations occurred the section of the box marked "No deviations occurred the section of the box marked "No deviations occurred the section of the box marked "No deviations occurred the section of the box marked "No deviations occurred the section of the box marked "No deviations occurred the section of the box marked "No deviations occurred the section of the box marked "No deviations occurred the section of the box marked "No deviations occurred the section of the box marked "No deviations occurred the section of the box marked "No deviations occurred the section of the box marked "No deviations occurred the section of the box marked "No deviations occurred the section of the box marked "No deviations occurred the section of the box marked". | n from the requirements, the date(s) of<br>een must be reported. Deviations that are<br>ig to the schedule stated in the applicable<br>/ be attached if necessary. If no deviations<br>ng period". |
| ☑ NO DEVIATIONS OCCURRED THIS REPORTING PERIOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                    |
| THE FOLLOWING DEVIATIONS OCCURRED THIS REPORTING PERIOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | )                                                                                                                                                                                                  |
| Permit Requirement: (specify permit condition #)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                    |

| Date of Deviation:           | Duration of Deviation: |  |
|------------------------------|------------------------|--|
| Number of Deviations:        |                        |  |
| Probable Cause of Deviation: |                        |  |
|                              |                        |  |
|                              |                        |  |
|                              |                        |  |

| Permit Requirement: (specify permit condition #) |                        |  |  |  |  |
|--------------------------------------------------|------------------------|--|--|--|--|
| Date of Deviation:                               | Duration of Deviation: |  |  |  |  |
| Number of Deviations:                            |                        |  |  |  |  |
| Probable Cause of Deviation:                     |                        |  |  |  |  |
|                                                  |                        |  |  |  |  |
|                                                  |                        |  |  |  |  |
| Response Steps Taken:                            |                        |  |  |  |  |
|                                                  |                        |  |  |  |  |
|                                                  |                        |  |  |  |  |

### Page 2 of 2

| Permit Requirement: (specify permit condition #) |                        |  |  |  |
|--------------------------------------------------|------------------------|--|--|--|
| Date of Deviation:                               | Duration of Deviation: |  |  |  |
| Number of Deviations:                            |                        |  |  |  |
| Probable Cause of Deviation:                     |                        |  |  |  |
|                                                  |                        |  |  |  |
| Response Steps Taken:                            |                        |  |  |  |

| Permit Requirement: (specify permit condition #) |                        |  |  |  |
|--------------------------------------------------|------------------------|--|--|--|
| Date of Deviation:                               | Duration of Deviation: |  |  |  |
| Number of Deviations:                            |                        |  |  |  |
| Probable Cause of Deviation:                     |                        |  |  |  |
| Response Steps Taken:                            |                        |  |  |  |

| Permit Requirement: (specify permit condition #) |                        |  |  |  |
|--------------------------------------------------|------------------------|--|--|--|
| Date of Deviation:                               | Duration of Deviation: |  |  |  |
| Number of Deviations:                            |                        |  |  |  |
| Probable Cause of Deviation:                     |                        |  |  |  |
| Response Steps Taken:                            |                        |  |  |  |
| Form Completed by: Seth Aches                    | on                     |  |  |  |

| Title / Position: General Manager, Cokenergy, LLC |  |
|---------------------------------------------------|--|
|---------------------------------------------------|--|

Date: \_\_\_\_\_ October 26, 2021

Phone: \_\_\_\_\_ (219) 397-4521 \_\_\_\_\_

Reporting Period: 3rd Quarter of 2021

**Excess Emissions and Downtime Report** 

### COKENERGY, LLC, East Chicago, IN Plant ID: 089-00383 Emissions Unit ID: Stack 201 Emissions Unit: Heat Recovery Coke Carbonization Waste Heat Stack

### PLANT OPERATIONS DOWNTIME SUMMARY

Reporting Period: 3rd Quarter of 2021

| Commencement of<br>Emission Unit Downtime              | Completion of<br>Emission Unit Downtime | Emission Unit Downtime<br>Duration (hours) | Reasons for Emission Unit Downtime |  |  |
|--------------------------------------------------------|-----------------------------------------|--------------------------------------------|------------------------------------|--|--|
| NONE                                                   |                                         |                                            |                                    |  |  |
| Total Emission Unit Downtime for the quarter = 0 hours |                                         |                                            |                                    |  |  |

### COKENERGY, LLC, East Chicago, IN Plant ID: 089-00383 Emissions Unit ID: Stack 201 Emissions Unit: Heat Recovery Coke Carbonization Waste Heat Stack

### EXCESS EMISSIONS SUMMARY

Reporting Period: 3rd Quarter of 2021

SO<sub>2</sub> Exceedances

Emission Standard: 1,656 lb/hr on a 24-hr average basis

(Note that this limit is for the combined emissions from Cokenergy Stack 201 and 16 IHCC Vent Stacks)

| Date/Time of Date/Time of | Magnitude of Emissions (lb/hr) |                | b/hr)          | Reasons for |                                          |                          |
|---------------------------|--------------------------------|----------------|----------------|-------------|------------------------------------------|--------------------------|
| Commencement              | Completion                     | Main Stack Avg | Vent Stack Avg | Plant Avg   | Excess Emissions                         | Corrective Actions Taken |
|                           |                                |                |                |             |                                          |                          |
|                           |                                |                |                | None        | C. C |                          |
| Notie                     |                                |                |                |             |                                          |                          |
|                           |                                |                |                |             |                                          |                          |

### COKENERGY, LLC, East Chicago, IN Plant ID: 089-00383 Emissions Unit ID: Stack 201 Emissions Unit: Heat Recovery Coke Carbonization Waste Heat Stack

### EXCESS EMISSIONS SUMMARY

Reporting Period: 3rd Quarter of 2021

**Opacity Exceedances** 

Emission Standard: 20% opacity

| Date/Time of<br>Commencement | Date/Time of<br>Completion | Magnitude of<br>Emissions | Reasons for<br>Excess Emissions | Corrective Actions Taken |
|------------------------------|----------------------------|---------------------------|---------------------------------|--------------------------|
|                              |                            |                           |                                 | •                        |
| None                         |                            |                           |                                 |                          |
|                              |                            |                           |                                 |                          |
| Total Duration               | 0 minutes                  |                           |                                 |                          |
## COKENERGY, LLC, East Chicago, IN Plant ID: 089-00383 Emissions Unit ID: Stack 201 Emissions Unit: Heat Recovery Coke Carbonization Waste Heat Stack

## CONTINUOUS MONITORING SYSTEM DOWNTIME SUMMARY

Reporting Period: 3rd Quarter of 2021

## **Opacity Monitor Downtime**

| Date/Time of<br>Commencement | Duration of Downtime<br>(minutes) | Reasons for<br>Instrument Downtime | System Repairs and Adjustments |  |  |
|------------------------------|-----------------------------------|------------------------------------|--------------------------------|--|--|
| 8/18/21 7:00                 | 120                               | 3rd Quarter PM & Opacity Audit     | Completed PMs and Audit        |  |  |
| Total Downtime               | 120 minutes                       |                                    |                                |  |  |

Note: Daily zero and span checks of the instrument have been excluded from the downtime summary per 326 IAC 3-5-7.

## COKENERGY, LLC, East Chicago, IN Plant ID: 089-00383 Emissions Unit ID: Stack 201 Emissions Unit: Heat Recovery Coke Carbonization Waste Heat Stack

## CONTINUOUS MONITORING SYSTEM DOWNTIME SUMMARY

Reporting Period: 3rd Quarter of 2021

## SO<sub>2</sub> CEMS Downtime

| Date/Time of<br>Commencement | Duration of Downtime<br>(hours) | Reasons for<br>Instrument Downtime | System Repairs and Adjustments |
|------------------------------|---------------------------------|------------------------------------|--------------------------------|
| 8/18/21 7:00                 | 1                               | 3rd Quarter PMs                    | Completed PMs                  |
| 8/18/21 9:00                 | 1                               | CGA                                | Completed CGA                  |
|                              |                                 |                                    |                                |
| Total Downtime               | 2 hours                         |                                    |                                |

Note: Daily zero and span checks of the instrument have been excluded from the downtime summary per 326 IAC 3-5-7.

# **CYLINDER GAS AUDIT**

FOR



Third (3rd) Quarter Results 2021

CGA Completed On: 8/18/2021

PREPARED BY:



.

.

## TABLE OF CONTENTS

| <i>I</i> . | Introduction                      | I |
|------------|-----------------------------------|---|
| П.         | Cylinder Gas Audit Procedures     | 3 |
| Ш.         | Cylinder Gas Audit Data Sheets    | 5 |
| IV.        | Cylinder Gas Certification Sheets | 6 |

Cylinder Gas Audit

Table

Monitoring Solutions, Inc.

Page

## LIST OF TABLES

|                                                      | - |
|------------------------------------------------------|---|
| Table 1-1: Summary of Cylinder Gas Audit Results     | 2 |
| Table 1-2: Measurement Points for Cylinder Gas Audit | 3 |

.

### Cylinder Gas Audit

Monitoring Solutions, Inc.

## I. Introduction

Monitoring Solutions, Inc. was contracted to conduct a Cylinder Gas Audit on a Continuous Emission Monitoring System (CEMS). This audit was performed:

Client: Primary Energy City, State: E. Chicago, IN Unit: Stack 201 Auditor: Dan Bowles Audit Date: 8/18/2021

The audit of the Continuous Emission Monitoring System was conducted for the following gases:

Gas #1 : SO2 Gas #2 : O2 Dry & O2 Wet

Our assessment of this quarter's CGA results indicates that all of the analyzers evaluated during this test program meet the accuracy requirements as outlined in 40 CFR 60, Appendix F. **NOTE**: Table 1-1 summarizes the results for the cylinder gas audit.

| Reviewed by: | achary F | lussell |  |
|--------------|----------|---------|--|
|--------------|----------|---------|--|

Date: 9/24/2021

**Revision: March 2020** 

Page 1

Stack 201

8/18/2021

## Summary of Cylinder Gas Audit Results

| Parameter | Low Gas Error | Mid Gas Error |
|-----------|---------------|---------------|
| SO2       | 2.0           | 0.8           |
| O2 Dry    | 4.0           | 2.0           |
| O2 Wet    | 0.0           | 2.0           |
|           | Pass          | Pass          |

Table 1-1

40 CFR 60, Appendix F Performance Test requirements: <15%

Page 2

## II. CYLINDER GAS AUDIT PROCEDURES

Each Continuous Emission Monitor (CEM) must be audited three out of four calendar quarters of each year. As part of the Quality Control (QC) and Quality Assurance (QA) procedures, the quality of data produced is evaluated by response accuracy compared to known standards,

The Cylinder Gas Audit (CGA) for this quarter was conducted in accordance with the QA/QC procedure outlined in 40 CFR 60, Appendix F.

All applicable audit gases are connected to the sampling system. Each gas is introduced into the sampling and analysis system. The gases flow through as much of the sampling path as possible.

The gases are actuated on and off by utilizing a computer and/or PLC controlled solenoids at designated time intervals.

- a) Challenge each monitor (both pollutant and diluent, if applicable) with cylinder gases of known concentrations at two measurement points listed in Table 1-2.
- b) Use a separate cylinder gas for measurement points 1 and 2. Challenge the CEMS three times at each measurement point and record the responses.
- c) Use cylinder gases that have been certified by comparison to National Institute of Standards and Technology (NIST) gaseous standard reference material (SRM) or NIST/EPA approved gas manufacturer's certified reference material (CRM) following "Traceability Protocol for Establishing True Concentrations of Gases Used for Calibration and Audits of Continuous Source Emission Monitors. (Protocol Number 1)."

**NOTE:** In rare cases, some operators may have pollutant cylinder gases that are not "Protocol I". Pollutant cylinder gases in high concentrations may not be certifiable to the "Protocol I Standard" and are only available as a "Certified Standard" (e.g. Sulfur Dioxide [SO2] in a concentration of 3.0% - or - 30,000 ppm).

| Gas           | Measurement point #1 | Measurement point #2 |  |  |  |  |
|---------------|----------------------|----------------------|--|--|--|--|
| Pollutants -  | 20-30% of span value | 50-60% of span value |  |  |  |  |
| Diluent - O2  | 4-6% by volume       | 8-12% by volume      |  |  |  |  |
| Diluent - CO2 | 5-8% by volume       | 10-14% by volume     |  |  |  |  |
| Table 1-2     |                      |                      |  |  |  |  |

**<u>NOTE</u>**: Some operators may have cylinder gas values that fall outside of these parameters. This may be a result of previous agreements with their state or local EPA authority.

d) Determine the Accuracy of each measurement point using the formula below. The "Accuracy" error must not exceed 15%.

$$A = \left(\frac{C_m - Ca}{C_a}\right) x \ 100 \qquad \leq 15 \text{ percent}$$

Where:

Cylinder Gas Audit

A = Accuracy of the CEMS, percent.

- $C_m$  = Average CEMS response during audit in units of applicable standard or appropriate concentration.
- $C_a$  = Average audit value (CGA certified value) in units of applicable standard or appropriate concentration.

Page 4

Monitoring Solutions, Inc.

## **III.** Cylinder Gas Audit Data Sheets

Page 5

## CYLINDER GAS AUDIT (CGA) ERROR DETERMINATION

| CLIENT<br>PLANT / SITE<br>UNIT IC<br>MONITOR TESTED<br>RANGE | T: Primary Energy<br>E: Chicago, IN<br>D: Stack 201<br>D: SO2<br>: 0 - 700 PPM |                         | ANALY           | CONDUCTED BY :<br>ATTENDEE :<br>AUDIT DATE:<br>ZER SERIAL NUMBER: | Dan Bowles<br>N/A<br>8/18/2021<br>1152150034 | -<br>-<br>- · · |   |
|--------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------|-----------------|-------------------------------------------------------------------|----------------------------------------------|-----------------|---|
|                                                              | Run                                                                            | Time                    | Reference value | Monitor value                                                     | Difference                                   | Error           | % |
|                                                              | 1                                                                              | 9:13                    | 176.50          | 180.20                                                            | 3.70                                         | 2.10            | % |
| Low-level                                                    | 2                                                                              | 9:31                    | 176.50          | 179.60                                                            | 3.10                                         | 1.76            | % |
|                                                              | 3                                                                              | 9:49                    | 176.50          | 180.30                                                            | 3.80                                         | 2.15            | % |
|                                                              | 1                                                                              | 9:07                    | 391.50          | 393.80                                                            | 2.30                                         | 0.59            | % |
| Mid-level                                                    | 2                                                                              | 9:25                    | 391.50          | 394.50                                                            | 3.00                                         | 0.77            | % |
|                                                              | 3                                                                              | 9:34                    | 391.50          | 396.00                                                            | 4.50                                         | 1.15            | % |
| Low-level                                                    | Arithmetic Mean:<br>CGA Error:                                                 | 180.03<br><b>2.00</b>   | %               | Tank S/N<br>Tank Expiration Date                                  | CC14789<br>7/25/2025                         | -               |   |
|                                                              |                                                                                |                         |                 |                                                                   |                                              |                 |   |
| Mid-Level                                                    | Arithmetic Mean:                                                               | 394.77<br><b>0.83</b> ' | %               | Tank S/N<br>Tank Expiration Date                                  | CC52858<br>2/2/2029                          | -               |   |

| Primary Energy Coke |      | CGA Report |         |                |          |          | Created on : Aug 18, 2021 09:55:36 |  |  |
|---------------------|------|------------|---------|----------------|----------|----------|------------------------------------|--|--|
| East Chicago, IN    |      |            | 08/18/2 | 2021 - 08/18/2 | 021      |          | STACK 201                          |  |  |
| Date Parameter      | Run# | Timestamp  | Туре    | Expected       | Measured | Low Diff | Mid Diff                           |  |  |
| 08/18/2021          |      |            |         |                | <u> </u> |          |                                    |  |  |
| SO2, PPM            | 1    | 09:07:33   | QTR_MID | 391.5          | 393.8    |          | 2.3                                |  |  |
| SO2, PPM            | 1    | 09:13:31   | QTR_LOW | 176.5          | 180.2    | 3.7      |                                    |  |  |
| SO2, PPM            | 2    | 09:25:32   | QTR_MID | 391.5          | 394.5    |          | 3.0                                |  |  |
| SO2, PPM            | 2    | 09:31:32   | QTR_LOW | 176.5          | 179.6    | 3.1      |                                    |  |  |
| SO2, PPM            | 3    | 09:43:32   | QTR_MID | 391.5          | 396.0    |          | 4.5                                |  |  |
| SO2, PPM            | 3    | 09:49:33   | QTR_LOW | 176.5          | 180.3    | 3.8      |                                    |  |  |

| Arithmetic Mean of Quarterly Low : 180.0 | Calibration Result : PASSED |
|------------------------------------------|-----------------------------|
| Linearity Error of Quarterly Low : 2.0   |                             |
| Calibration Tolerance: 15.0              | CEMS Type : Full Extractive |
| Tank S/N: N/A                            | Manufacturer: Thermo        |
| Tank Exp. Date: N/A                      | Model Number : 43i-HL       |
|                                          | Serial Number: 1152150034   |
| Arithmetic Mean of Quarterly Mid : 394.8 | Monitor Certification Date: |
| Linearity Error of Quarterly Mid : 0.8   |                             |
| Calibration Tolerance: 15.0              | Tested By :                 |
| Tank S/N: N/A                            |                             |
| Tank Exp. Date: N/A                      | Date:                       |
|                                          |                             |
|                                          |                             |

## CYLINDER GAS AUDIT (CGA) ERROR DETERMINATION

| CLIENT: F<br>PLANT / SITE: E<br>UNIT ID: S<br>MONITOR TESTED: C<br>RANGE : C | Primary Energy<br>E. Chicago, IN<br>Stack 201<br>D2 Dry<br>D - 25 % |                      | CONDUCTED BY :       Dan Bowles         ATTENDEE :       N/A         AUDIT DATE:       8/18/2021         ANALYZER SERIAL NUMBER:       11400 |                                     |                       |         |  |
|------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------------------|---------|--|
|                                                                              | Run                                                                 | Time                 | Reference value                                                                                                                              | Monitor value                       | Difference            | Error % |  |
|                                                                              | 1                                                                   | 9:13                 | 5.01                                                                                                                                         | 4.80                                | -0.21                 | -4.17 % |  |
| Low-level                                                                    | 2                                                                   | 9:31                 | 5.01                                                                                                                                         | 4.80                                | -0.21                 | -4.17 % |  |
|                                                                              | 3                                                                   | 9:49                 | 5.01                                                                                                                                         | 4.80                                | -0.21                 | -4.17 % |  |
|                                                                              | 1                                                                   | 9:19                 | 9.97                                                                                                                                         | 9.80                                | -0.17                 | -1.71 % |  |
| Mid-level                                                                    | 2                                                                   | 9:37                 | 9.97                                                                                                                                         | 9.80                                | -0.17                 | -1.71 % |  |
|                                                                              | 3                                                                   | 9:55                 | 9.97                                                                                                                                         | 9.80                                | -0.17                 | -1.71 % |  |
| Low-level                                                                    | Arithmetic Mean:                                                    | 4.80<br><b>4.0</b> % | 3                                                                                                                                            | Tank S/N_<br>Tank Expiration Date_  | CC14789<br>7/25/2025  |         |  |
|                                                                              |                                                                     |                      |                                                                                                                                              |                                     |                       |         |  |
| Mid-Level                                                                    | Arithmetic Mean: S                                                  | 9.80<br><b>2.0 %</b> |                                                                                                                                              | Tank S/N_<br>Tank Expiration Date _ | CC400438<br>8/16/2025 |         |  |

| Primary Energy Coke<br>East Chicago, IN |           | CGA Report |                         |         |          |          | Created on : Aug 18, 2021 09:55:36 |                                          |  |
|-----------------------------------------|-----------|------------|-------------------------|---------|----------|----------|------------------------------------|------------------------------------------|--|
|                                         |           |            | 08/18/2021 - 08/18/2021 |         |          |          |                                    | STACK 201                                |  |
| Date                                    | Parameter | Run#       | Timestamp               | Туре    | Expected | Measured | Low Diff                           | Mid Diff                                 |  |
| 08/18/                                  | 2021      |            |                         |         |          |          |                                    | an a |  |
|                                         | 02 DRY, % | 1          | 09:13:31                | QTR_LOW | 5.0      | 4.8      | 0.2                                |                                          |  |
|                                         | O2 DRY, % | 1          | 09:19:31                | QTR_MID | 10.0     | 9.8      |                                    | 0.2                                      |  |
|                                         | O2 DRY, % | 2          | 09:31:32                | QTR_LOW | 5.0      | 4.8      | 0.2                                |                                          |  |
|                                         | O2 DRY, % | 2          | 09:37:32                | QTR_MID | 10.0     | 9.8      |                                    | 0.2                                      |  |
|                                         | O2 DRY, % | 3          | 09:49:33                | QTR_LOW | 5.0      | 4.8      | 0.2                                |                                          |  |
|                                         | O2 DRY, % | 3          | 09:55:33                | QTR_MID | 10.0     | 9.8      |                                    | 0.2                                      |  |

| Arithmetic Mean of Quarterly Low : 4.8 | Calibration Result : PASSED |
|----------------------------------------|-----------------------------|
| Linearity Error of Quarterly Low : 4.0 |                             |
| Calibration Tolerance: 15.0            | CEMS Type : Full Extractive |
| Tank S/N: N/A                          | Manufacturer: Brand Gaus    |
| Tank Exp. Date: N/A                    | Model Number : 4705         |
|                                        | Serial Number: 11400        |
| Arithmetic Mean of Quarterly Mid : 9.8 | Monitor Certification Date: |
| Linearity Error of Quarterly Mid : 2.0 |                             |
| Calibration Tolerance: 15.0            | Tested By :                 |
| Tank S/N: N/A                          |                             |
| Tank Exp. Date: N/A                    | Date:                       |
|                                        |                             |

## CYLINDER GAS AUDIT (CGA) ERROR DETERMINATION

| CLIENT:       | Primary Energy   |       |                 | CONDUCTED BY :                         | Dan Bowles |         |
|---------------|------------------|-------|-----------------|----------------------------------------|------------|---------|
| PLANT / SITE: | E. Chicago, IN   |       |                 | N/A                                    | _          |         |
| UNIT ID:      | Stack 201        |       | -               | AUDIT DATE:                            | 8/18/2021  |         |
|               | 02 Wet           |       | ΔΝΔΙΥ           |                                        | 11401      |         |
| RANGE :       | 0 - 25 %         |       |                 |                                        |            | -       |
|               |                  |       |                 |                                        |            |         |
|               | Run              | Time  | Reference value | Monitor value                          | Difference | Error % |
|               | _ 1              | 9:13  | 5.01            | 5.00                                   | -0.01      | -0.18 % |
| Low-level     | 2                | 9:31  | 5.01            | 5.00                                   | -0.01      | -0.18 % |
|               | 3                | 9:49  | 5.01            | 5.00                                   | -0.01      | -0.18 % |
|               | 1                | 9:19  | 9.97            | 10.10                                  | 0.13       | 1.30 %  |
| Mid-level     | 2                | 9:37  | 9.97            | 10.20                                  | 0.23       | 2.31 %  |
|               | 3                | 9:55  | 9.97            | 10.20                                  | 0.23       | 2.31 %  |
|               |                  |       |                 | ************************************** |            |         |
|               |                  |       |                 |                                        |            |         |
|               | Arithmetic Mean: | 5.00  |                 | Tank S/N                               | CC14789    | _       |
| Low-level     |                  |       |                 | Tank Expiration Date                   | 7/25/2025  |         |
|               | CGA Error:       | 0.0 9 | %               |                                        |            |         |
|               |                  |       |                 |                                        |            |         |
|               |                  |       |                 |                                        |            |         |
|               | Arithmetic Mean: | 10.17 |                 | Tank S/N                               | CC400438   |         |
| Mid-Level     |                  |       |                 | Tank Expiration Date                   | 8/16/2025  | -       |
|               | CGA Error:       | 1.7 9 | %               |                                        |            | -       |

| Primary Energy Coke |      | CGA Report              |         |          |          | Created on : Aug 18, 2021 09:55:36 |           |  |
|---------------------|------|-------------------------|---------|----------|----------|------------------------------------|-----------|--|
| East Chicago, IN    |      | 08/18/2021 - 08/18/2021 |         |          |          |                                    | STACK 201 |  |
| Date Parameter      | Run# | Timestamp               | Туре    | Expected | Measured | Low Diff                           | Mid Diff  |  |
| 08/18/2021          |      |                         | ······  |          |          |                                    |           |  |
| O2 WET, %           | 1    | 09:13:31                | QTR_LOW | 5.0      | 5.0      | 0.0                                |           |  |
| O2 WET, %           | 1    | 09:19:31                | QTR_MID | 10.0     | 10.1     |                                    | 0.1       |  |
| O2 WET, %           | 2    | 09:31:32                | QTR_LOW | 5.0      | 5.0      | 0.0                                |           |  |
| O2 WET, %           | 2    | 09:37:32                | QTR_MID | 10.0     | 10.2     |                                    | 0.2       |  |
| O2 WET, %           | 3    | 09:49:33                | QTR_LOW | 5.0      | 5.0      | 0.0                                |           |  |
| O2 WET, %           | 3    | 09:55:33                | QTR_MID | 10.0     | 10.2     |                                    | 0.2       |  |

| Arithmetic Mean of Quarterly Low : 5.0  | Calibration Result : PASSED |
|-----------------------------------------|-----------------------------|
| Linearity Error of Quarterly Low : 0.0  |                             |
| Calibration Tolerance: 15.0             | CEMS Type : Full Extractive |
| Tank S/N: N/A                           | Manufacturer: Brand Gaus    |
| Tank Exp. Date: N/A                     | Model Number : 4705         |
|                                         | Serial Number: 11401        |
| Arithmetic Mean of Quarterly Mid : 10.2 | Monitor Certification Date: |
| Linearity Error of Quarterly Mid : 1.7  |                             |
| Calibration Tolerance: 15.0             | Tested By :                 |
| Tank S/N: N/A                           |                             |
| Tank Exp. Date: N/A                     | Date:                       |
| •                                       |                             |
|                                         |                             |

Cylinder Gas Audit

Monitoring Solutions, Inc.

# **IV.** Cylinder Gas Certification Sheets

Page 6

٠

Airco Specialty Conses

na se se forga a tra Receiver Stratta data a se Magna e gla Rodga t

In Service 5/21/4

## **CERTIFICATE OF ANALYSIS** Grade of Product: EPA Protocol

| r, Stont<br>Bader M<br>Wator<br>VP Nu<br>Cade | ры<br>Аподряс<br>Ларот<br>А    | F03NI89E15A005<br>CC52858<br>124 - Chicago (S7<br>812021<br>CO2 SO2 BALN<br>E | 2<br>VPj - R                                                                                                                                                                                      | Reference N<br>Cylinder Voli<br>Cylinder Pre<br>Valve Outlet<br>Cerufication                                                                                                                       | omber<br>ume<br>Ssore<br>Oate                                | 54-4020133389-1<br>149.9 CF<br>2015 PSIG<br>660<br>Feb 12-2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                |
|-----------------------------------------------|--------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
|                                               |                                |                                                                               | <ul> <li>Line todardu</li> <li>Alconomity ()</li> </ul> | Feb 02, 2029<br>Astay and Certical<br>Industria regional com-<br>Etablish on a cless white<br>South cost on the same<br>South cost on the same<br>South cost on the same<br>South cost on the same | n ad tan iy<br>a la din ya<br>n adlarti<br>na a<br>strana ad | 4 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                |
| Сатран                                        | eat                            | Requested<br>Concentration                                                    | ANALYI<br>Actual<br>Concentration                                                                                                                                                                 | TCAL RESU<br>Protocol<br>Method                                                                                                                                                                    | LTS<br>Total (<br>Uncer                                      | Relative<br>tanez                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Assay<br>Oates                 |
| SULVUR (<br>SULVUR (<br>SULVUR )<br>SULVUR )  | 011 < 201<br>- N - A - E<br>14 | BBS O PARA<br>Su BB 15<br>Sultance                                            | 951 5 99(3<br>1940 - S                                                                                                                                                                            | ())<br>()                                                                                                                                                                                          | ** 11 11<br>*1 - 11                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 01/20/20/23 02 02 02 02 02 02  |
| Туре                                          | Lo <b>t I</b> D                | Cylinder No                                                                   | CALIBRAT<br>Concentration                                                                                                                                                                         | TON STAND                                                                                                                                                                                          | ARDS                                                         | Un⊚ertainty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Expiration Date                |
| 1.1211                                        | 19-00554<br>08611828           | CC774755<br>20310535                                                          | 0557925(30)<br>23.04 × CAR30                                                                                                                                                                      | FUR DIORIDE/MIT<br>IN DIORIDE/MITRO                                                                                                                                                                | ROG <b>e</b> a<br>Doen                                       | $\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$ | Анд 92 - 2025<br>Jun 27 - 2022 |
| listane                                       | auMake Mo                      | del                                                                           | ANALYTI<br>Analytical Princ                                                                                                                                                                       | TAL EQUIP!<br>Iple                                                                                                                                                                                 | HENT                                                         | ast Multipoint Calib                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ration                         |
| {<br>•                                        |                                |                                                                               | E HR<br>F HR                                                                                                                                                                                      | 17.444 Terraria and a second secon                                                                                    | ;<br>;                                                       | an (84–2023)<br>an (85–2023)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |

Friad Oata Available Upon Request

•

5

v<sup>1</sup> .:

ļ



Approved for Release

Page 1 of 54-402013389-1

AIIGAS an Artia Errin

Inservice 9/29/17

Airgas USA, LLC 12722 S. Wentworth Ave. Chicago, IL 60628 Auguston

## **CERTIFICATE OF ANALYSIS**

## **Grade of Product: EPA Protocol**

Part Number Cylinder Number, Laboratory PGVP Number Gas Code E04NI84E15A0007 CC14789 124 - Chicago - IL B12017 CO2,O2,SO2,BALN

007 Reference Number Cylinder Volume: IL Cylinder Pressure Valve Outlet ALN Certification Date: Expiration Date: Jul 25, 2025

54-124629354-1 150.4 CF 2015 PSIG 660 Jul 25, 2017

Certification performed in accordance with "EPA Triceability Protocol for Assay and Confilication of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impuntes which affect the use of this calibration mixture. All concentrations are on a volumet/volume basis unless otherwise noted.

Do Not Use This Cylinder below 100 psig, i.e. 0.7 megapascals ANALYTICAL RESULTS Component Requested Actual Protocol Total Relative Assav Concentration Dates Concentration Method Uncertainty SULFUR DIOXIDE 175 0 PPM 176.5 PPM +I- 1.0% NIST Traceable 07/17/2017. 07/25/2017 G1 OXYGEN 5 000 % 07/18/2017 5.009 % G١ +/- 1.0% NIST Traceable CARBON DIOXIDE 07/17/2017 10.00 % 10.00 % G١ +/- 0.9% NIST Traceable NITROGEN Balance CALIBRATION STANDARDS Type Lot ID Cylinder No Uncertainty **Expiration Date** Concentration NTRM 16060140 CC437515 Nov 16 2021 515.2 PPM SULFUR DIOXIDE/NITROGEN +/- 0.8% NTRM 11060719 Dec 13 2022 CC338460 4.861 % OXYGEN/NITROGEN +1-0.4% NTRM 13060635 CC413759 13.359 % CARBON DIOXIDE/NITROGEN +1-0.6% May 09. 2019 ANALYTICAL EQUIPMENT Analytical Principle Last Multipoint Calibration Instrument/Make/Model Nicolet 6700 AHR0801332 FTIR Jun 21, 2017 02-1 HORIBA MPA-510 3VUYL9NR Jui 17, 2017 Paramagnetic Nicolet 6700 AHR0801332 FTIR Jul 21, 2017

Triad Data Available Upon Request



Approved for Releas

#### Page 1 of 54-124629354-1



Airgas Specialty Gases Airgas USA, LLC 12722 S. Wentworth Ave. Chicago, IL 60628 Airgas.com

## **CERTIFICATE OF ANALYSIS**

## **Grade of Product: EPA Protocol**

| Part Number:     | E02NI90E15A0228          | Reference Number:   | 54-400967311-1 |
|------------------|--------------------------|---------------------|----------------|
| Cylinder Number: | CC400438                 | Cylinder Volume:    | 145.2 CF       |
| Laboratory:      | 124 - Chicago (SAP) - IL | Cylinder Pressure:  | 2015 PSIG      |
| PGVP Number:     | B12017                   | Valve Outlet:       | 590            |
| Gas Code:        | O2,BALN                  | Certification Date: | Aug 16, 2017   |
|                  | Expiration Date:         | Aug 16, 2025        |                |

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a volume/volume basis unless otherwise noted.

|                    |                    |                  | ANALYTIC                 | CAL RESULTS        |                               |                 |
|--------------------|--------------------|------------------|--------------------------|--------------------|-------------------------------|-----------------|
| Component          | Request<br>Concent | ed /<br>ration ( | Actual<br>Concentration  | Protocol<br>Method | Total Relative<br>Uncertainty | Assay<br>Dates  |
| OXYGEN<br>NITROGEN | 10.00 %<br>Balance | ę                | 9.970 %                  | G1                 | +/- 1% NIST Traceable<br>-    | 08/16/2017      |
| Туре               | Lot ID             | Cylinder No      | CALIBRATIC<br>Concentrat | N STANDARI         | DS<br>Uncertainty             | Expiration Date |
| NTRM               | 06120102           | CC195613         | 9.898 % OXY              | GEN/NITROGEN       | +/- 0.7%                      | Jul 26, 2018    |
|                    |                    |                  | ANALYTICA                | L EQUIPMEN         | T                             |                 |
| Instrument/M       | /lake/Model        |                  | Analytical Pr            | inciple            | Last Multipoint Ca            | libration       |
| <b>O2-1 HORIBA</b> | MPA-510 3VUYL9     | NR               | Paramagnetic             |                    | Jul 17, 2017                  |                 |

**Triad Data Available Upon Request** 



Signature on file **Approved for Release** 

Page 1 of 54-400967311-1

# **OPACITY PERFORMANCE AUDIT**

FOR



Third (3rd) Quarter Results 2021

Audit Completed On: 8/18/2021

PREPARED BY:



**Opacity Performance Audit** 

.

.

## TABLE OF CONTENTS

| L   | Intro                                               | oduction ,                      | 1 |  |  |  |  |
|-----|-----------------------------------------------------|---------------------------------|---|--|--|--|--|
| II. | Monitoring Solutions, Inc. COMS Model Durag D-R 290 |                                 |   |  |  |  |  |
|     | Α.                                                  | COMS Description                | 2 |  |  |  |  |
|     | Β.                                                  | Performance Audit Procedures    | 3 |  |  |  |  |
|     | С.                                                  | Interpretation of Audit Results | 9 |  |  |  |  |

Appendix A - COMS Audit Data Forms for the Durag Model D-R 290 Appendix B - Audit Filter Certification Sheet(s) **Opacity Performance Audit** 

Monitoring Solutions, Inc.

### I. Introduction

Monitoring Solutions, Inc. was contracted to conduct an opacity performance audit on a Durag Model D-R 290 opacity system.

Client: Primary Energy City, State: E. Chicago, IN Auditor: Dan Bowles Audit Date: 8/18/2021

The performance testing consists of:

- I Zero and Span Check
- 2 Zero Compensation Check
- 3 Optical Alignment Check
- 4 Calibration Error Check
- 5 Annual Zero Alignment (When required)

All raw data, calculated data and final summary are presented. The results indicate compliance for all specifications. Testing was performed as per 40CFR60 Appendix F and 40CFR60 Appendix B, PS1 (Where Applicable).

Annual "Zero Alignment" check performed this quarter:

YES: \_\_\_\_\_ NO: \_\_X

ERROR: N/A

Summary of Calibration Error Check Filter : Low Mid High

Filter : Low Mid High Percent of Error: 0.30 0.20 0.30 PASS PASS PASS

| Reviewed by: | Zachary | Russell |  |
|--------------|---------|---------|--|
|              | 0104100 | ~ 1     |  |

Date: 9/24/2021

**Revision: March 2016** 

Page 1

.

# PERFORMANCE AUDIT PROCEDURES FOR THE MONITORING SOLUTIONS, INC. OPACITY MONITOR

## 11. Monitoring Solutions, Inc. Durag Model D-R 290

The instrument is manufactured by the Durag Corporation and distributed and serviced by Monitoring Solutions, Inc.

## A. COMS Description

The Monitoring Solutions, Inc. D-R 290 opacity monitoring system consists of four major components: the Transmissometer, the terminal control box, the air-purging system and the remote control unit and data acquisition equipment. The Transmissometer component consists of an optical transmitter/receiver (transceiver) unit mounted on one side of a stack or duct and a retro reflector unit mounted on the opposite side. The transceiver unit contains the light source, the photodiode detector, and the associated electronics. The transceiver uses a single-lamp, single detector system to determine effluent opacity. A LED light source is modulated electronically at 2 KHz to eliminate any ambient light interference. The modulated beam is configured to alternately produce reference and measurement signals so that the effects of variations in the optical and electronic components of the COMS are minimized.

In a single display configuration, an AW unit is mounted in a blue housing next to the transceiver location. In a dual display configuration, an AZ unit is mounted in the blue housing next to the transceiver location and an AW is mounted in a remote location, typically, a control room. The AZ and the AW communicate via an RS 422 cable. The AZ unit provides an on stack readout and can be used as a diagnostic tool. In either configuration, only the AW provides the signals to the final recording device.

The air purging system serves a threefold purpose: 1) it provides an air window to keep exposed optical surfaces clean; 2) it protects the optical surfaces from condensation of stack gas moisture; and 3) it minimizes thermal conduction from the stack to the instrument. A standard installation has one air-purging system for each the transceiver and the retro reflector units.

The opacity monitor measures the amount of light transmitted through the effluent from the transceiver to the retro reflector and back again. The control unit uses the effluent transmittance to calculate the optical density of the effluent at the monitor location, or the "path" optical density. In order to provide stack exit opacity data, the path optical density must be corrected. The correction factor is expressed as the ratio of the stack exit inside diameter to the inside diameter of the stack at the Transmissometer location. This ratio is called the "stack correction factor" (SCF) by Monitoring Solutions, Inc. The following equations illustrate the relationship between this ratio, path optical density, and stack exit opacity.

Monitoring Solutions, Inc.

|        | $L_x/L_t$       | =            | stack correction factor                                                     |
|--------|-----------------|--------------|-----------------------------------------------------------------------------|
| where: | L <sub>x</sub>  |              | stack exit inside diameter (in)                                             |
|        | Lı              | <u>viris</u> | the stack inside diameter (or the duct width) at the monitor location (in). |
|        | OP <sub>x</sub> |              | $1 - (1 - \frac{Opacity}{100})^{correction\ factor}$                        |
|        | OP <sub>x</sub> | -            | stack exit opacity (%)                                                      |

## Calculation of "Stack Correction Factor"

## B. Performance Audit Procedures

## I. Preliminary Data

- a. Obtain the stack exit inside diameter (in feet) and the stack inside diameter at the monitor location (in feet). Record these values in Blanks 1 and 2 of the Monitoring Solutions, Inc. D-R 290 Performance Audit Data Sheet.
  - Note: Effluent handling system dimensions may be acquired from the following sources listed in descending order of reliability: 1) physical measurements, 2) construction drawings, 3) opacity monitor installation/certification documents, and 4) source personnel recollections.
- b. Calculate the stack correction factor (SCF) by dividing the value in Blank 1 by the value in Blank 2. Record the result in Blank 3.
- c. Record the source-cited Stack Correction Factor (SCF) in Blank 4.
  - Note: The stack correction factor (SCF) is preset by the manufacturer using information supplied by the source. The value recorded in Blank 4 should be the value source personnel agree should be set inside the monitor.
- d. Obtain the reference zero and span calibration values. Record these values in Blank 5 and Blank 6, respectively.
  - Note: The reference zero and span calibration values may not be the same as the values recorded during instrument installation and/or certification. The zero and span values recorded in Blank 5 and Blank 6 should be the reference values recorded during the most recent clear-path calibration of the CEMS.

#### 2. Error Checks

The following steps describe the error codes for the Monitoring Solutions, Inc. D-R 290 remote control unit. The audit can continue with the error codes shown below being present, provided the source has been informed of the fault conditions. All other error codes must be corrected prior to audit.

Error code 100 = Transceiver blower fault Error code 200 = Transceiver filter plugged Error code 300 = Reflector blower fault Error code 400 = Reflector filter plugged

Note: If a fault is active, an error code will be displayed on the stack mounted display and on the remote display. An explanation of the error codes can be found in the manual.

#### 3. Instrument Range Check

- a. Check the COMS measurement range by pressing the MOD button (the LED on the button will light up) and using the PLUS button to cycle through the displays.
- b. Record the instrument range in Blank 11.

### 4. Reference Signal, Zero and Span Checks

- a. Initiate the calibration cycle by pressing the arrow and plus buttons simultaneously and holding for approximately 5 seconds.
  - **Note:** The opacity monitor will automatically cycle through the internal zero (zero point check), external zero (window check), span and stack taper ratio modes. Approximately 6 minutes for a complete cycle.
- b. Record the milliamp value shown for the internal zero (zero point check) displayed on the control panel display in Blank 12.
  - Note: The internal zero checks the instrument reference signal (Zero Point Check). Since the instrument provides a full scale output of 4 to 20 milliamps, a value of 4 milliamps displayed on the control unit display represents a zero condition. After 1 ½ minutes in the internal zero mode, the monitor will automatically switch to the external zero mode (Window Check).
- c. Record the milliamp value shown for the external zero (window check) displayed on the control panel in Blank 13. Also record the external zero value (in percent opacity) displayed on the opacity data recorder in Blank 14.
   (Continued on next page)

- Note: During the zero calibration check, the zero mirror is moved into the path of the measurement beam by a servomotor. The zero mechanism is designed to present the transceiver with a simulated clear-path condition. The daily zero check does not test the actual clear-path zero, nor does it provide a check of cross-stack parameters such as the optical alignment of the Transmissometer or drift in the reflectance of the retro reflector. The actual clear-path zero can only be checked during clear-stack or off-stack calibration of the CEMS. In addition to simulating the instrument clear-path zero, the zero mechanism allows the amount of dust on the transceiver optics (primary lens and zero mirror) to be quantified. After 1 ½ minutes in the external zero mode, the CEMS will automatically enter the span mode.
- d. Record in Blank 15 the span value (in milliamps) displayed on the control panel display. Also record the span value (in percent opacity) displayed on the data recorder in Blank 16. Go to the Transmissometer location.
  - Note: During the span calibration check, a servomotor moves an internal span filter into the path of the measurement beam while the zero mirror is in place. The span mechanism is designed to provide an indication of the upscale accuracy of the CEMS relative to the simulated clear-path zero. Note: The opacity monitor display will output its stack correction factor (SCF) for 1 ½ minutes when the span portion of the calibration cycle is completed. The CEMS automatically returns to the measurement mode when the SCF portion of the calibration cycle is complete.

### 5. Reflector Dust Accumulation Check.

- a. Record the effluent opacity prior to cleaning the retroreflector optics in Blank 17.
- b. Open the reflector housing, inspect and clean the retroreflector optics, and close the housing.
- c. Record the post-cleaning effluent opacity in Blank 18. Go to the transceiver location.

## 6. Transceiver Dust Accumulation Check.

- a. Record the pre-cleaning effluent opacity in Blank 19.
- b. Open the transceiver, clean the optics (primary window and zero mirror) and close the transceiver.
- c. Record the post-cleaning effluent opacity in Blank 20.

#### 7. Alignment Check

- a. Determine the monitor alignment by looking through the alignment port of the side of the transceiver.
- b. Observe whether the image is centered in the cross hairs and record this information (YES or NO) in Blank 21.

#### 8. Zero Compensation Check

The Durag 290 provides internal compensation for window contamination. This compensation value can be determined by performing the Window Check. This compensation cannot be disabled for testing. Remove internal compensation as follows: Clean the transceiver window and the zero mirror lens. Verify the window check value is at zero so no compensation is applied to the quarterly audit. Enter the Filter Audit Mode and verify the starting Durag opacity value is zero percent. <u>NOTE</u>: This process must be completed prior to the Calibration Error Check.

#### 9. Zero Alignment Error Check

The Zero Alignment Error Check is performed one time each year. This check utilizes Durag's Clear Path Procedure. This procedure verifies the "measuring" zero point of the unit in a known clear path setup. The Transceiver and reflector are removed from their installation and set up on stands in a clean, dust free environment. The stands are set at the same distance as the installation location. Without performing any adjustments, the measuring zero is compared to the simulated zero - or - Window Check. The difference between the measuring zero and the simulated zero, must NOT exceed 2% opacity.

Verify the Zero Compensation Check has been performed. Since the zero compensation function cannot be disabled for the zero alignment check, the optics must be cleaned and a manual calibration performed. This will set the internal compensation value to 0.0%. This MUST be accomplished prior to the Zero Alignment Check.

Perform the following to document the "Zero Alignment Error":

- a) Remove the Transceiver & Reflector from its current installation and setup on stands at the exact distance as their original location.
- b) Perform the Zero Compensation Check and perform a manual calibration.
- c) Record the Durag's response to the clear path zero in % opacity without any adjustment.
- d) Activate the simulated zero (Window Check) and record the reading in % opacity without any adjustment. (continued on next page)

- e) The response difference between these two readings are recorded as the "zero alignment error". The maximum allowable zero alignment error is 2%.
- f) Adjust the simulated zero (window check) to read the same value in % opacity as the clear path zero.

#### 10. Calibration Error Check

The calibration error check is performed using three neutral density filters. Performing the calibration error check on-stack using the filters determines the linearity of the instrument response relative to the current clear-path zero setting. This calibration error check does not determine the accuracy of the actual instrument clear-path zero or the status of any cross-stack parameters. A true calibration check is performed by moving the on-stack components to a location with minimal ambient opacity, making sure that the proper path length and alignments are attained, and then placing the calibration filters in the measurement path.

- a. Put the monitor in Filter Audit mode.
- b. Wait approximately three minutes or until a clear "zero" value has been recorded and displayed on the data recorder.
- c. Record the audit filter serial numbers and opacity values in Blanks 22, 23, and 24.
- d. Remove the filters from their protective covers, inspect and if necessary, clean them.
- e. Insert the low range neutral density filter into the filter audit slot located in front of the heated lens.
- f. Wait approximately three minutes or until a clear value has been recorded and displayed on the data recorder.
  - **Note:** The audit data should be taken from a data recording/reporting device that presents instantaneous opacity (or opacity data with the shortest available integration period).
- g. Record the COMS response to the low range neutral density filter.
- h. Remove the low range filter and insert the mid range neutral density filter.
- i. Wait approximately three minutes and record the COMS response to the mid range neutral density filter.
- j. Remove the mid range filter and insert the high range filter.
- k. Wait approximately three minutes and record the COMS response to the high range neutral density filter.
   (continued on next page)

Page 7

- 1. Remove the high range filter.
- m. \* If applicable, wait approximately three minutes, and record the zero value.
- n. Repeat steps (e) through (m) until a minimum of <u>three</u> opacity readings are obtained for each neutral density filter.
- o. If six-minute integrated opacity data is required, repeat steps (e) through (m) once more, changing the waiting periods to 13 minutes.
- p. Record the six-minute integrated data.
  - Note: In order to acquire valid six-minute averaged opacity data, each filter must remain in for at least two consecutive six-minute periods; the first period will be invalid because it was in progress when the filter was inserted. A waiting period of 13 minutes is recommended. You should have a "starting zero" reading and an "ending zero" reading.
- q. When the calibration error check is complete, return the monitor to measuring mode. Close the transceiver head and the weather cover, and return to the COMS control unit.

#### 11. Test Conclusion

- a. Obtain a copy of the audit data from the data recorder.
- b. Transcribe the calibration error response from the data recorder to Blanks 25 through 50 of the audit form and complete the audit data calculations.

### C. Interpretation of Audit Results

This section is designed to help the auditor interpret the D-R 290 performance audit results.

#### Error codes / fault analysis

Error codes are typically associated with parameters that the monitor manufacturer feels are critical to COMS function, and to the collection of valid opacity data. The parameters associated with each of the error codes are found in the manufacturer's manual. With the exception of alarms that warn of elevated opacity levels (alarm or warning lamps), the error codes indicate that the COMS is not functioning properly. An error or failure indication will be represented by a "YES" in Blanks 7 - 10.

(continued on next page)

### **Stack Exit Correlation Error Check**

The path length correction error in Blank 51 should be within +2%. This error exponentially affects the opacity readings, resulting in over - or - underestimation of the stack exit opacity. The most common error in computing the optical path length correction factor is the use of the flange-to-flange distance in place of the stack/duct inside diameter at the monitor location. This error will result in underestimation of the stack exit opacity and can be identified by comparing the monitor optical path length to the flange-to-flange distance; the flange-to-flange distance should be greater by approximately two to four feet

#### **Control Panel Meter Error (Optional)**

The accuracy of the control panel meter (AW) is important at sources using the meter during monitor adjustment and calibration. The accuracy of the control panel meter (Blank 52 and Blank 54) is determined by comparing the zero and span reference values to the panel meter output recorded during the COMS calibration check.

Note: Some installations utilize a different "Instrument Range Setting" than the normal 100% range. The panel meter span error must be corrected for the different range in order to provide an accurate error result. Use the following equation to calculate the span error corrected for "Instrument Range" (Blank 11):

> Panel Meter span error in % opacity = (((Blank 15 - 4) ÷ 16) × Blank 11) - Blank 6

## Zero and Span Checks

The D-R 290 internal zero or "zero point check" (Blank 12 should be set to indicate 0% opacity (equivalent to 3.7 - 4.3 mA). An external zero error or "window check" (Blank 53) greater than 4% opacity is usually due to excessive dust accumulation on the optical surfaces, electronic drift or an electronic/mechanical offset of the data recorder. Excessive dust on the optical surfaces sufficient to cause a significant zero error would be indicated by the difference in the internal and external zero values and/or window alarm. Instrument span error (Blank 55) may be caused by the same problem(s) that cause zero errors and may be identified in a similar fashion.

If the zero and span errors are due to a data recorder offset, both errors will be in the same direction and will be of the same magnitude

(continued on next page)

The external zero displayed on the control unit panel meter (AW) also indicates the level of dust accumulation on the zero retroreflector and transceiver measurement window. The difference between the internal and external zero responses should equal the amount of dust found on the transceiver optics (Blank 57). To convert the zero responses to a value that represents lens dusting in percent opacity, use the following equation.

Meter response in % opacity = 6.25 [(Blank 13) - (Blank 12)]

## **Optical Alignment Check**

When the transceiver and retroreflector are misaligned, a portion of the measurement beam that should be returned to the measurement detector is misdirected, resulting in a positive bias in the data reported by the COMS. One of the most common causes of misalignment is vibration which may cause the on-stack components to shift slightly on the instrument mounting flanges. Another common cause of misalignment is thermal expansion and contraction of the structure on which the transmissometer is mounted. If the COMS is being audited while the unit is off-line (cold stack), the results of the alignment analysis may not be representative of the alignment of the instrument when the stack or duct is at normal operating temperature. When checking the alignment, the reflected light beam should be centered.

#### Zero Compensation Check

The Zero Compensation Check should be performed and documented as such in (Blank 21a).

## Annual Zero Alignment Error Check

The Zero Alignment Error Check is performed once each year. It verifies that the enegy output from the simulated zero device (Window Check) is within 2% of the Clear Path reading. The values required for this check are documented in (Blank 21b). If the difference between the Clear Path Value and the Simulated Zero (Window Check) value differ by more than 2%, then the COMS unit is considered Out Of Control. If the difference is 2% or less, then the Window Check Value is adjusted to match the Clear Path value.

## **Optical Surface Dust Accumulation Check**

The results of the dust accumulation check (Blank 58) should not exceed 4%. A dust accumulation value of more than 4% opacity indicates that the air flow of the purge system and/or the cleaning frequency of the optical surfaces are inadequate. When determining the optical surface dust accumulation, the auditor should note whether the effluent opacity is relatively stable (within +2% opacity) before and after cleaning the optical surfaces. If the effluent opacity is fluctuating by more that +2%, the dust accumulation analysis should be omitted.

(continued on next page)

## **Calibration Error**

Calibration error results (Blanks 68, 69 and 70) in excess of +3% are indicative of a nonlinear or miss calibrated instrument. However, the absolute calibration accuracy of the monitor can be determined only when the instrument clear-path zero value is known. If the zero and span data are out-of-specification, the calibration error data will often be biased in the direction of the zero and span errors. Even if the zero and span data indicate that the COMS is calibrated properly, the monitor may still be inaccurate due to error in the clear-path zero adjustment. The optimum calibration procedure involves using neutral density filters during clear-stack or off-stack COMS calibration. This procedure would establish both the absolute calibration accuracy and linearity of the COMS. If this procedure is impractical, and it is reasonable to assume that the clear-path zero is set correctly, the monitor's calibration can be set using either the neutral density filters or the internal zero and span values. **Opacity Performance Audit** 

Monitoring Solutions, Inc.

Appendix A COMS Audit Data Forms for the Durag Model D-R 290

#### E. Chicago, IN Primary Energy Stack 201 Page 1 of 5 8/18/2021 Primary Energy City, ST: E. Chicago, IN Company: Unit ID: Stack 201 **Dan Bowles Representing: Monitoring Solutions** Auditor: N/A Representing: Attendees: Transceiver serial number: 1248342 Reflector serial number: 1248145 COMS Flange to Flange distance (Feet / Inches): 226.125" Remote serial number 1248283 Date: 8/18/2021 Preliminary Data 216.000 inches 1 Inside diameter at Stack Exit = Lx 2 Inside diameter at the Transmissometer location = Lt 216.000 inches 1.000 3 Calculated Stack Correction Factor (SCF) = Lx/Lt 1.000 4 Source-cited Stack Correction Factor (SCF) 0.00 % 5 Source-cited zero automatic calibration value (% opacity) 40.00 % 6 Source-cited span automatic calibration value (% opacity) [START AT CONTROL UNIT / DATA RECORDER LOCATION] (If required) (INSPECT DATA RECORDING SYSTEM AND MARK WITH "OPACITY AUDIT," AUDITOR'S NAME, AFFILIATION, DATE, SOURCE, PROCESS UNIT/STACK IDENTIFICATION, AND THE TIME OF DAY.] Error codes / faults YES - or - NO 7 Blower [Loss of purge air from blower - Error 100, 300] NO 8 Filter (Air filter restriction - Error 200, 400) NO 9 Window [Excessive dirt on transceiver window - Error 001] NO 10 Fault [Additional CEMS fault has occurred. Note fault code NO on Opacity display and consult the instrument manual.] Instrument Range Check 11 Instrument range setting 100 % Zero Check 12 Opacity Display - Internal zero value in "milliamps" (Zero Point Check) 4.00 mA [Wait for 1½ minutes for automatic change to external zero mode.] 13 Opacity Display - Zero calibration value in "milliamps" (Window Check) 4.00 mA 14 Opacity data recorder zero calibration value in "% Op" (Window Check) 0.00 mA [Wait 1½ minutes for automatic change to span mode.] Span Check 10.40 mA 15 Opacity Display - Span calibration value in "milliamps" (Span Check) 40.00 % 16 Opacity data recorder span calibration value in "% Op" (Span Check) [Go to reflector location.]

## AUDIT DATA SHEET MONITORING SOLUTIONS DURAG D-R 290 COMS

## AUDIT DATA SHEET MONITORING SOLUTIONS DURAG D-R 290 COMS

| 8/18/2                                                                                                                   | 021 Primary Er                                                                                                                                                                                                                                  | nergy                                                                                          | E. Chicago, IN           | Stack 201                              | Page 2 of 5                            |  |
|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------|----------------------------------------|----------------------------------------|--|
| Reflec<br>17 Pr<br>[<br>18 Pc<br>[Go to<br>Transe<br>19 Pr<br>[In                                                        | tor Dust Accumulation Che<br>e-cleaning effluent opacity<br>(Inspect and clean optical s<br>ost-cleaning effluent opacity<br>transceiver location.)<br>ceiver Dust Accumulation C<br>e-cleaning effluent opacity<br>spect and clean optical win | ck<br>(% Op)<br>urface.]<br>· (% Op)<br>:heck and Zero Comp<br>(% Op)<br>dow and zero mirror.] | ensation Check           | <u>3.6</u><br><u>3.8</u><br><u>3.8</u> | <u>)</u> %<br><u>)</u> %<br><u>)</u> % |  |
| 20 Pc                                                                                                                    | ost-cleaning effluent opacity                                                                                                                                                                                                                   | (% Op)                                                                                         |                          | 2.9                                    | <u>)</u> %                             |  |
| Optica<br>(LOO)<br>21 Is                                                                                                 | al Alignment Check<br>K THROUGH ALIGNMENT<br>the image centered?                                                                                                                                                                                | SIGHT AND DETERI                                                                               | MINE IF BEAM IMAGE IS CE | NTERED.]<br>YES - c<br>YE              | ır - NO<br>S                           |  |
| Zero (                                                                                                                   | Compensation Check                                                                                                                                                                                                                              |                                                                                                |                          |                                        |                                        |  |
| 21a                                                                                                                      | Did you comply with the 2                                                                                                                                                                                                                       | ero Compensation Cl                                                                            | neck?                    | YES - c<br>YE                          | or - NO<br>IS                          |  |
| Annu                                                                                                                     | al Zero Alignment Error Ch                                                                                                                                                                                                                      | eck                                                                                            |                          | die bindelik uit ofdere bekennen wert  | ana ana amin'ny faritr'o ana d         |  |
| 21b                                                                                                                      | Did you comply with the A                                                                                                                                                                                                                       | nnual Zero Alignmen                                                                            | t Error Check?           | YES - c                                | or - NO<br>O                           |  |
| Zero Alignment Error Check results (if applicable):<br>Clear Path Value % = N/A Window Check Value % = N/A Error % = N/A |                                                                                                                                                                                                                                                 |                                                                                                |                          |                                        |                                        |  |
| [Kecc                                                                                                                    | ord audit filter data.j                                                                                                                                                                                                                         |                                                                                                |                          |                                        |                                        |  |
|                                                                                                                          | Filter                                                                                                                                                                                                                                          | Serial NO.                                                                                     | % Opacity                | SCF                                    | 6                                      |  |
|                                                                                                                          | 22 LOW                                                                                                                                                                                                                                          |                                                                                                | 18.20                    | 18.2                                   | <u>0</u> %                             |  |
|                                                                                                                          | 23 MID                                                                                                                                                                                                                                          | ZP33                                                                                           | 25.10                    | 25.1                                   | <u>0</u> %                             |  |
|                                                                                                                          | 24 HIGH                                                                                                                                                                                                                                         | ZC32                                                                                           | 43.90                    | 43.9                                   | <u>0</u> %                             |  |

[Remove the audit filters from the protective covers, inspect, and clean each filter]

[Set the unit up to display the initial zero. Wait 3 minutes to allow opacity data recorder to record initial zero]

[Insert a filter, wait approximately 3 minutes, and record the opacity value reported by the opacity data recorder. Repeat the process 5 times for each filter.]

[Read and transcribe final calibration error data from the opacity data recorder on the next page]
| 8/18/2021 | Primary Energy |           |             |          | E. Chica | igo, IN | Stack 201 | Page 3 of 5 |                                        |
|-----------|----------------|-----------|-------------|----------|----------|---------|-----------|-------------|----------------------------------------|
| 25        | ZERO           | 0.00      |             |          |          |         |           |             |                                        |
|           |                |           |             |          |          |         |           | (If R       | equired)                               |
|           | LOW            |           | MID         |          |          | HIGH    |           | Z           | ERO                                    |
| 26        | 18.50          | 2         | 7 25.30     | I        | 28       | 43.60   |           | 29 N/A      | ι.                                     |
| 30        | 18.50          | 3         | 1 25.30     |          | 32 ¯     | 43.60   |           | 33 N/A      | <u> </u>                               |
| 34 -      | 18.50          | 3         | 5 25.30     |          | 36       | 43.60   |           | 37 N/A      |                                        |
| 38        | 18.50          | 3         | 9 25.30     | ****     | 40       | 43.60   |           | 41 N/A      | ······································ |
| 42        | 18.50          | 4         | 3 25.30     |          | 44 _     | 43.60   |           | 45          | 0.00                                   |
|           | [Six-mi        | inute ave | erage data, | if appli | cable.]  |         |           |             |                                        |
|           | -              |           | -           |          |          |         |           | (           | If Required)                           |
|           | ZERO           |           | LOW         |          | MID      |         | HIGH      |             | ZERO                                   |
| 46        | 0.00           | 47        | 18.60       | 48       | 25.30    | 49      | 43.70     | 50          | 0.00                                   |

#### AUDIT DATA SHEET MONITORING SOLUTIONS DURAG D-R 290 COMS

Reserved Area

## Calculation of Audit Results

| Stack Correction Factor correlation error (%): |                                                                     |          |  |  |  |
|------------------------------------------------|---------------------------------------------------------------------|----------|--|--|--|
|                                                | 1.000 1.000                                                         |          |  |  |  |
|                                                | 51 $\left[\frac{Blank \ 4 - Blank \ 3}{Blank \ 3}\right] \times 10$ | 0 = 0.00 |  |  |  |
|                                                | 1.000                                                               |          |  |  |  |
| Zero Error (% Op.):                            |                                                                     |          |  |  |  |
|                                                | 4.00 0.00                                                           |          |  |  |  |
| 52 Opacity Display                             | 6.25 * (Blank 13 - 4.0) - Blank 5                                   | = 0.00 % |  |  |  |
|                                                | 0.00 0.00                                                           |          |  |  |  |
| 53 Opacity Data Recorder                       | Blank 14 - Blank 5                                                  | = 0.00   |  |  |  |

l nor knowne gelekele de de neer good en de neer kelen aan were en de genoer by pare een neer kelener aan genegede en daar eer were eer ware eer were eer ward oor

| 8/18/2021                                   | Primary Energy                          |                                          | E                          | . Chicago,          | , IN             | Stac | k 201 | Page 4 of 5 |
|---------------------------------------------|-----------------------------------------|------------------------------------------|----------------------------|---------------------|------------------|------|-------|-------------|
| Span Error (% Op.):                         |                                         |                                          |                            |                     |                  |      |       |             |
| 54 Opacity Display                          | 10.40<br>(((Blank 1                     | 5 - 4.0) ÷ 16                            | 6) × B                     | 100<br>Iank 11) - I | 40.00<br>Blank 6 | =    | 0.00  | %           |
| 55 Opacity Data Rec                         | order                                   | 40<br>Blank 16                           | -                          | 40<br>Blank 6       |                  | -    | 0.00  |             |
| Optical Surface Dus                         | at Accumulation (%                      | OP):                                     |                            |                     |                  |      |       |             |
| 56 Retroreflector                           |                                         | 3.6<br>Blank 17                          | -                          | 3.5<br>Blank 18     |                  | =    | 0.10  | %           |
| 57 Transceiver                              |                                         | 3.5<br>Blank 19                          |                            | 2.9<br>Blank 20     |                  |      | 0.60  | %           |
| 58 Total                                    |                                         | 0.1<br>Blank 56                          | +                          | 0.6<br>Blank 57     |                  | =    | 0.70  | %           |
| Optical Path Length<br>Audit Filters Correc | Correction (SCF)<br>ted for Path Length | <u>I:</u>                                |                            |                     |                  |      |       |             |
| 59 LOW:                                     |                                         | 18.20                                    | 1.00                       | 00                  |                  |      |       |             |
|                                             | 1 - (1 - (                              | $\frac{Blank 22}{100}$ ) <sup>Bla</sup>  | <sup>nk 4</sup> )          | x 100               |                  |      | 18.20 | %           |
| 60 MID:                                     | 1 - (1 - (                              | $\frac{25.10}{\frac{Blank 23}{100}} Bla$ | 1.00<br><sup>(nk 4</sup> ) | 00<br>x 100         |                  | Ξ    | 25.10 | %           |
| 61 HIGH                                     | 1 - (1 - (                              | 43.90<br>Blank 24<br>100                 | 1.0                        | 00<br>x 100         |                  | **** | 43.90 | %           |
|                                             | - <u></u>                               |                                          |                            |                     |                  |      |       |             |

#### AUDIT DATA SHEET MONITORING SOLUTIONS DURAG D-R 290 COMS

#### Primary Energy E. Chicago, IN Stack 201 8/18/2021 Page 5 of 5 Auditor: Dan Bowles Date: 08/18/21 Source: Primary Energy Unit: Stack 201 PARAMETER Blank No. **Audit Results Specifications** Error Codes/Faults Blower failure 7 NO NO Filter Blockage 8 NO NO Window 9 NO NO Fault 10 NO NO SCF Correlation Error 51 0.00 +/- 2% Op Display 52 0.00 +/- 4% Op Internal Zero Error Data 53 0.00 +/- 4% Op Display 54 0.00 +/- 4% Op Internal Span Error Data 55 0.00 +/- 4% Op **Optical Alignment Analysis** 21 YES YES = Centered Zero Compensation Check 21a YES YES = Complied With Zero Alignment Error 21b N/A ≤ 2% Op **Optical Surface Dust Accumulation** Retroreflector 56 0.10 ≤ 2% Op Transceiver 57 ≤ 2% Op 0,60 Total 58 0.70 ≤ 4% Op **Calibration Error Analysis** Arithmetic Mean Difference 62 0.30 LOW 71a 0.40 63 0.20 MID 72a 0.20 64 -0.30 HIGH 73a -0.20 Confidence Coeffecient 65 0.00 66 0.00 67 0.00 **Calibration Error** 68 0.30 ≤ 3% Op 69 0.20 ≤ 3% Op

70

0.30

≤ 3% Op

#### AUDIT DATA SHEET MONITORING SOLUTIONS DURAG D-R 290 COMS

Revision: March, 2016

| OPACITY LOW FILTER AUDIT Accuracy Determination |                                         |                                                       |                                |              |  |  |
|-------------------------------------------------|-----------------------------------------|-------------------------------------------------------|--------------------------------|--------------|--|--|
| Primary Ene                                     | rgy                                     | E. Chicago, IN                                        | Stack 201                      | 8/18/2021    |  |  |
| LOW<br>FILTER<br>RUN                            | Opacity Output from<br>Recording Device | Audit Filter Value Corrected for<br>Path Length (SCF) | (FILTER-MONITOR)<br>Difference | Difference^2 |  |  |
|                                                 |                                         | RM                                                    | (X <sub>i</sub> )              |              |  |  |
| 1                                               | 18.50                                   | 18.20                                                 | 0.30                           | 0.0900       |  |  |
| 2                                               | 18.50                                   | 18.20                                                 | 0.30                           | 0.0900       |  |  |
| 3                                               | 18.50                                   | 18.20                                                 | 0.30                           | 0.0900       |  |  |
| 4                                               | 18.50                                   | 18.20                                                 | 0.30                           | 0.0900       |  |  |
| 5                                               | 18.50                                   | 18.20                                                 | 0.30                           | 0.0900       |  |  |
| n =<br>t(0.975) =                               | 5<br>2.776                              |                                                       |                                |              |  |  |
|                                                 | Mean Ref. Method Value                  | 18.2000                                               | RM                             |              |  |  |
|                                                 | Sum of Differences                      | 1.5000                                                | Xi                             |              |  |  |
|                                                 | Arithmetic Mean Differen                | ce 0.3000                                             | Xi ave                         |              |  |  |
|                                                 | Sum of Differences Squa                 | Xi^2                                                  |                                |              |  |  |
|                                                 | Standard Deviation                      | 0.0000                                                | sd                             |              |  |  |
|                                                 | 2.5% Error Conf.Coef                    | 0.0000                                                | CC                             |              |  |  |
|                                                 | Calibration Error                       | 0.3000                                                | percent                        |              |  |  |
|                                                 |                                         |                                                       |                                |              |  |  |

|                      |                                         | OPACITY MID FILTER AU                                 |                                |              |  |  |
|----------------------|-----------------------------------------|-------------------------------------------------------|--------------------------------|--------------|--|--|
| Primary Ene          | ergy                                    | E. Chicago, IN                                        | Stack 201                      | 8/18/2021    |  |  |
| MID<br>FILTER<br>RUN | Opacity Output from<br>Recording Device | Audit Filter Value Corrected for<br>Path Length (SCF) | (FILTER-MONITOR)<br>Difference | Difference^2 |  |  |
|                      |                                         | RM                                                    | (X <sub>i</sub> )              | Xi^2         |  |  |
| 1                    | 25.30                                   | 25.10                                                 | 0.20                           | 0.0400       |  |  |
| 2                    | 25.30                                   | 25.10                                                 | 0.20                           | 0.0400       |  |  |
| 3                    | 25.30                                   | 25.10                                                 | 0.20                           | 0.0400       |  |  |
| 4                    | 25.30                                   | 25.10                                                 | 0.20                           | 0.0400       |  |  |
| 5                    | 25.30                                   | 25.10                                                 | 0.20                           | 0.0400       |  |  |
| n =<br>t(0.975) =    | 5<br>2.776                              |                                                       |                                |              |  |  |
|                      | Mean Ref. Method Value 25.1000 RM       |                                                       |                                |              |  |  |
|                      | Sum of Differences 1.0000 Xi            |                                                       |                                |              |  |  |
|                      | Arithmetic Mean Differen                | nce 0.2000                                            | Xi ave                         |              |  |  |
|                      | Sum of Differences Squ                  | ared 0.2000                                           | Xi^2                           |              |  |  |
|                      | Standard Deviation                      | 0.0000                                                | sd                             |              |  |  |
|                      | 2.5% Error Conf.Coef                    | 0.0000                                                | CC                             |              |  |  |

0.2000 percent

Calibration Error

| OPACITY HIGH FILTER AUDIT                            |                                         |                                                       |                                |              |  |  |  |  |
|------------------------------------------------------|-----------------------------------------|-------------------------------------------------------|--------------------------------|--------------|--|--|--|--|
|                                                      | Accuracy Determination                  |                                                       |                                |              |  |  |  |  |
| Primary Ene                                          | ergy                                    | E. Chicago, IN                                        | Stack 201                      | 8/18/2021    |  |  |  |  |
|                                                      |                                         |                                                       |                                |              |  |  |  |  |
| HIGH<br>FILTER<br>RUN                                | Opacity Output from<br>Recording Device | Audit Filter Value Corrected for<br>Path Length (SCF) | (FILTER-MONITOR)<br>Difference | Difference^2 |  |  |  |  |
|                                                      |                                         | RM                                                    | (X <sub>i</sub> )              | $X_i^2$      |  |  |  |  |
| 1                                                    | 43.60                                   | 43.90                                                 | -0.30                          | 0.0900       |  |  |  |  |
| 2                                                    | 43.60                                   | 43.90                                                 | -0.30                          | 0.0900       |  |  |  |  |
| 3                                                    | 43.60                                   | 43.90                                                 | -0.30                          | 0.0900       |  |  |  |  |
| 4                                                    | 43.60                                   | 43.90                                                 | -0.30                          | 0.0900       |  |  |  |  |
| 5                                                    | 43.60                                   | 43.90                                                 | -0.30                          | 0.0900       |  |  |  |  |
| n = 5<br>t(0.975) = 2.776<br>Mean Ref. Method \/alua |                                         |                                                       |                                |              |  |  |  |  |
| Mean Rei, Meniou Value 43.9000 RM                    |                                         |                                                       |                                |              |  |  |  |  |

| Mean Ref. Method Value     | 43.9000 RM     |
|----------------------------|----------------|
| Sum of Differences         | -1.5000 Xi     |
| Arithmetic Mean Difference | -0.3000 Xi ave |
| Sum of Differences Squared | 0.4500 Xi^2    |
| Standard Deviation         | 0.0000 sd      |
| 2.5% Error Conf.Coef       | 0.0000 CC      |
| Calibration Error          | 0.3000 percent |
|                            |                |

F

Ĺ

| Primary Energy Coke |       |      | Scans Report                                                                                                        | Created on : Aug 18, 2021 08:16:47 |
|---------------------|-------|------|---------------------------------------------------------------------------------------------------------------------|------------------------------------|
| East Chicago, IN    |       |      | 08/18/2021 07:15 - 08/18/2021 07:40                                                                                 | STACK 201                          |
| 08/18/2021          | OPACI | TY % |                                                                                                                     |                                    |
| 07:19               |       |      | ange, et alla salar fa fan de skriet fan een en fan de skriet fan de mêre een een de fan de gereen op gereen o<br>T |                                    |
| 07:19:01            | 0.0   | MOS  |                                                                                                                     |                                    |
| 07:19:03            | 0.0   | MOS  |                                                                                                                     |                                    |
| 07:19:05            | 0.0   | MOS  |                                                                                                                     |                                    |
| 07:19:07            | 0.0   | MOS  |                                                                                                                     |                                    |
| 07:19:09            | 0.0   | MOS  |                                                                                                                     |                                    |
| 07:19:11            | 0.0   | MOS  |                                                                                                                     |                                    |
| 07:19:13            | 0.0   | MOS  |                                                                                                                     |                                    |
| 07:19:15            | 0.0   | MOS  |                                                                                                                     |                                    |
| 07:19:17            | 0.0   | MOS  |                                                                                                                     |                                    |
| 07:19:19            | 0.0   | MOS  | ×                                                                                                                   |                                    |
| 07:19:21            | 0.0   | MOS  |                                                                                                                     |                                    |
| 07:19:23            | 0.0   | MOS  |                                                                                                                     |                                    |
| 07:19:25            | 0.0   | MOS  |                                                                                                                     |                                    |
| 07:19:27            | 0.0   | MOS  |                                                                                                                     |                                    |
| 07:19:29            | 0.0   | MOS  |                                                                                                                     |                                    |
| 07:19:31            | 0.0   | MOS  |                                                                                                                     |                                    |
| 07:19:33            | 5.6   | MOS  |                                                                                                                     |                                    |
| 07:19:35            | 10.2  | MOS  |                                                                                                                     |                                    |
| 07:19:37            | 14.6  | MOS  |                                                                                                                     |                                    |
| 07:19:39            | 18.4  | MOS  |                                                                                                                     |                                    |
| 07:19:41            | 18.5  | MOS  |                                                                                                                     |                                    |
| 07:19:43            | 18.5  | MOS  |                                                                                                                     |                                    |
| 07:19:45            | 18,5  | MOS  |                                                                                                                     |                                    |
| 07:19:47            | 18.5  | MOS  |                                                                                                                     |                                    |
| 07:19:49            | 18.5  | MOS  |                                                                                                                     |                                    |
| 07:19:51            | 18.5  | MOS  |                                                                                                                     |                                    |
| 07:19:53            | 18,5  | MOS  |                                                                                                                     |                                    |
| 07:19:55            | 18.5  | MOS  |                                                                                                                     |                                    |
| 07:19:57            | 18.5  | MOS  |                                                                                                                     |                                    |

MOS = MONITOR OUT OF SERVICE

18.5 MOS

CEMDAS Evolution™

07:19:59

Page 5 of 26

| Primary Energy Coke<br>East Chicago, IN |         |      | Scans Report                     | Created on : Aug 18, 2021 08:16:47 |
|-----------------------------------------|---------|------|----------------------------------|------------------------------------|
|                                         |         |      | 08/18/2021 07:15 - 08/18/2021 07 | :40 STACK 201                      |
| 08/18/2021                              | OPACITY | Y,%  |                                  |                                    |
| 07:20                                   |         |      |                                  |                                    |
| 07:20:01                                | 18.5 M  | NOS  |                                  |                                    |
| 07:20:03                                | 18.5 M  | NOS  |                                  |                                    |
| 07:20:05                                | 18.5 N  | los  |                                  |                                    |
| 07:20:07                                | 18.5 M  | los  |                                  |                                    |
| 07:20:09                                | 18.5 M  | los  |                                  |                                    |
| 07:20:11                                | 18.5 M  | NOS  |                                  |                                    |
| 07:20:13                                | 17.6 M  | IOS  |                                  |                                    |
| 07:20:15                                | 15.1 N  | NOS  |                                  |                                    |
| 07:20:17                                | 16.8 M  | NOS  |                                  |                                    |
| 07:20:19                                | 18.5 N  | vios |                                  |                                    |
| 07:20:21                                | 21.0 M  | vios |                                  |                                    |
| 07:20:23                                | 25.3 M  | NOS  |                                  |                                    |
| 07:20:25                                | 25.3 M  | MOS  |                                  |                                    |
| 07:20:27                                | 25.3 M  | vios |                                  |                                    |
| 07:20:29                                | 25.3 N  | MOS  |                                  |                                    |
| 07:20:31                                | 25.3    | MOS  |                                  |                                    |
| 07:20:33                                | 25.3    | MOS  |                                  |                                    |
| 07:20:35                                | 25.3 N  | MOS  |                                  |                                    |
| 07:20:37                                | 25.3    | MOS  |                                  |                                    |
| 07:20:39                                | 25.3    | MOS  |                                  |                                    |
| 07:20:41                                | 25.3    | MOS  |                                  |                                    |
| 07:20:43                                | 25.3    | MOS  |                                  |                                    |
| 07:20:45                                | 25.3    | MOS  |                                  |                                    |
| 07:20:47                                | 25.3 1  | MOS  |                                  |                                    |
| 07:20:49                                | 25.3    | MOS  |                                  |                                    |
| 07:20:51                                | 25.3    | MOS  |                                  |                                    |
| 07:20:53                                | 25.3 1  | MOS  |                                  |                                    |
| 07:20:55                                | 25.3    | MOS  |                                  |                                    |
| 07:20:57                                | 20,4    | MOS  |                                  |                                    |

Status Code Definitions

MOS = MONITOR OUT OF SERVICE

24.7 MOS

CEMDAS Evolution™

07:20:59

Page 6 of 26

| Primary Energy Coke |       |       | Scans Report                        | Created on : Aug 18, 2021 08:16:47 |
|---------------------|-------|-------|-------------------------------------|------------------------------------|
| East Chicago, IN    |       |       | 08/18/2021 07:15 - 08/18/2021 07:40 | STACK 201                          |
|                     |       |       |                                     |                                    |
| 08/18/2021          | OPACI | ΓY, % |                                     |                                    |
| 07.21               | 20.2  | MOS   |                                     |                                    |
| 07:21:01            | 29,3  | NOS   |                                     |                                    |
| 07:21:03            | 33.9  | MUS   |                                     |                                    |
| 07:21:05            | 41.1  | MOS   |                                     |                                    |
| 07:21:07            | 43.6  | MOS   |                                     |                                    |
| 07:21:09            | 43.6  | MOS   |                                     |                                    |
| 07:21:11            | 43.6  | MOS   |                                     |                                    |
| 07:21:13            | 43.6  | MOS   |                                     |                                    |
| 07:21:15            | 43.6  | MOS   |                                     |                                    |
| 07:21:17            | 43.6  | MOS   |                                     |                                    |
| 07:21:19            | 43,6  | MOS   |                                     |                                    |
| 07:21:22            | 43.6  | MOS   |                                     |                                    |
| 07:21:24            | 43.6  | MOS   |                                     |                                    |
| 07:21:26            | 43.6  | MOS   |                                     |                                    |
| 07:21:28            | 43.6  | MOS   |                                     |                                    |
| 07:21:30            | 43.6  | MOS   |                                     |                                    |
| 07:21:32            | 43.6  | MOS   |                                     |                                    |
| 07:21:34            | 43.6  | MOS   |                                     |                                    |
| 07:21:36            | 43,6  | MOS   |                                     |                                    |
| 07:21:38            | 43.6  | MOS   |                                     |                                    |
| 07:21:40            | 38.4  | MOS   |                                     |                                    |
| 07:21:42            | 30.7  | MOS   |                                     |                                    |
| 07:21:44            | 24.4  | MOS   |                                     |                                    |
| 07:21:46            | 18.2  | MOS   |                                     |                                    |
| 07:21:48            | 17.1  | MOS   |                                     |                                    |
| 07:21:50            | 18.5  | MOS   |                                     |                                    |
| 07:21:52            | 18.5  | MOS   |                                     |                                    |
| 07:21:54            | 18.5  | MOS   |                                     |                                    |
| 07:21:56            | 18.5  | MOS   |                                     |                                    |

MOS = MONITOR OUT OF SERVICE

18.6 MOS

07:21:58

CEMDAS Evolution™

Page 7 of 26

| Primary Ener | gy Coke | Scans Report                        | Created on : Aug 18, 2021 08:16:47 |
|--------------|---------|-------------------------------------|------------------------------------|
| East Chicago | , IN    | 08/18/2021 07:15 - 08/18/2021 07:40 | STACK 201                          |
|              |         |                                     |                                    |
| 08/18/2021   | OPACI   | Y, %                                |                                    |
| 07:22        |         |                                     |                                    |
| 07:22:00     | 18,5    | MOS                                 |                                    |
| 07:22:02     | 18.5    | NOS                                 |                                    |
| 07:22:04     | 18.5    | MOS                                 |                                    |
| 07:22:06     | 18.5    | MOS                                 |                                    |
| 07:22:08     | 18.5    | MOS                                 |                                    |
| 07:22:10     | 18.5    | MOS                                 |                                    |
| 07:22:12     | 18.5    | MOS                                 |                                    |
| 07:22:14     | 18.5    | MOS                                 |                                    |
| 07:22:16     | 18.5    | MOS                                 |                                    |
| 07:22:18     | 18.6    | MOS                                 |                                    |
| 07:22:20     | 16.5    | MOS                                 |                                    |
| 07:22:22     | 18.6    | MOS                                 |                                    |
| 07:22:24     | 20.3    | MOS                                 |                                    |
| 07:22:26     | 23.1    | MOS                                 |                                    |
| 07:22:28     | 25.3    | MOS                                 |                                    |
| 07:22:30     | 25.3    | MOS                                 |                                    |
| 07:22:32     | 25.3    | MOS                                 |                                    |
| 07:22:34     | 25.3    | MOS                                 |                                    |
| 07:22:36     | 25.3    | MOS                                 |                                    |
| 07:22:38     | 25.3    | MOS                                 |                                    |
| 07:22:40     | 25.3    | MOS                                 |                                    |
| 07:22:42     | 25.3    | MOS                                 |                                    |
| 07:22:44     | 25.3    | MOS                                 |                                    |
| 07:22:46     | 25.3    | MOS                                 |                                    |
| 07:22:48     | 25.3    | MOS                                 |                                    |
| 07:22:50     | 25.3    | MOS                                 |                                    |
| 07:22:52     | 25.3    | MOS                                 |                                    |
| 07:22:54     | 25.3    | MOS                                 |                                    |
| 07:22:56     | 25.3    | MOS                                 |                                    |

MOS = MONITOR OUT OF SERVICE

20,5 MOS

07:22:58

CEMDAS Evolution™

Page 8 of 26

ter bei ein zu der bei der bei der bei der der der bei der

| Primary Energy Coke |        | Scans Report                  | Created on : Aug 18, 2021 08:16:47 |
|---------------------|--------|-------------------------------|------------------------------------|
| East Chicago,       | IN     | 08/18/2021 07:15 - 08/18/2021 | 07:40 STACK 201                    |
|                     |        |                               |                                    |
| 08/18/2021          | OPACIT | , %                           |                                    |
| 07:23               |        |                               |                                    |
| 07:23:00            | 24.7 N | OS                            |                                    |
| 07:23:02            | 29.3 N | OS                            |                                    |
| 07:23:04            | 33.9 N | OS                            |                                    |
| 07:23:06            | 43.3 N | OS                            |                                    |
| 07;23:08            | 43.6 N | OS                            |                                    |
| 07:23:10            | 43.6 N | OS                            |                                    |
| 07:23:12            | 43.6 N | os                            |                                    |
| 07:23:14            | 43.6 N | OS                            |                                    |
| 07:23:16            | 43.6 M | os                            |                                    |
| 07:23:18            | 43.6 M | OS                            |                                    |
| 07:23:20            | 43.6 N | OS                            |                                    |
| 07:23:22            | 43.6 M | os                            |                                    |
| 07:23:24            | 43.6 M | os                            |                                    |
| 07:23:26            | 43.6 N | os                            |                                    |
| 07:23:28            | 43.6 M | OS                            |                                    |
| 07:23:30            | 43.6 N | OS                            |                                    |
| 07:23:32            | 43.6   | os                            |                                    |
| 07:23:34            | 43.6 M | os                            |                                    |
| 07:23:36            | 43.6 M | os                            |                                    |
| 07:23:38            | 43.6 M | os                            |                                    |
| 07:23:40            | 43.6 N | os                            |                                    |
| 07:23:42            | 35.6   | OS                            |                                    |
| 07:23:44            | 28.0   | OS                            |                                    |
| 07:23:46            | 217    | 05                            |                                    |
| 07:23:48            | 13.9 M | 05                            |                                    |
| 07:23:50            | 18.3 M | 05                            |                                    |
| 07:23:52            | 18.6 M | 05                            |                                    |
| 07:23:54            | 18.6   | 05                            |                                    |
| 07:23:56            | 18.6   | OS                            |                                    |

Status Code Definitions

MOS = MONITOR OUT OF SERVICE

18.6 MOS

CEMDAS Evolution™

07:23:58

Page 9 of 26

| Primary Energy Coke |          | Scans Report                       | Created on : Aug 18, 2021 08:16:47 |
|---------------------|----------|------------------------------------|------------------------------------|
| East Chicag         | o, IN    | 08/18/2021 07:15 - 08/18/2021 07:4 | 0 STACK 201                        |
| 135660              | a tan in |                                    |                                    |
| 08/18/2021          | I OPACI  | Y, %                               |                                    |
| 07:24               | 10 E     | NOC.                               |                                    |
| 07:24:00            | 18.5     | WOS                                |                                    |
| 07:24:02            | 10.0     | MOS                                |                                    |
| 07:24:05            | 18.5     | MOS                                |                                    |
| 07:24:07            | 18.5     | MOS                                |                                    |
| 07:24:09            | 18,5     | MOS                                |                                    |
| 07:24:11            | 18.5     | MOS                                |                                    |
| 07:24:13            | 18.5     | MOS                                |                                    |
| 07:24:15            | 18.6     | MOS                                |                                    |
| 07:24:17            | 18.5     | MOS                                |                                    |
| 07:24:19            | 18.5     | MOS                                |                                    |
| 07.24:21            | 18.5     | MOS                                |                                    |
| 07:24:23            | 18.5     | MOS                                |                                    |
| 07:24:25            | 15.3     | MOS                                |                                    |
| 07:24:27            | 16.9     | MOS                                |                                    |
| 07:24:29            | 18.6     | MOS                                |                                    |
| 07:24:31            | 20,6     | MOS                                |                                    |
| 07:24:33            | 25.2     | MOS                                |                                    |
| 07:24:35            | 25,2     | MOS                                |                                    |
| 07:24:37            | 25.2     | MOS                                |                                    |
| 07:24:39            | 25.2     | MOS                                |                                    |
| 07:24:41            | 25.3     | MOS                                |                                    |
| 07:24:43            | 25.3     | MOS                                |                                    |
| 07:24:45            | 25.3     | MOS                                |                                    |
| 07:24:47            | 25.2     | MOS                                |                                    |
| 07:24:49            | 25.2     | MOS                                |                                    |
| 07:24:51            | 25.2     | MOS                                |                                    |
| 07:24:53            | 25.2     | MOS                                |                                    |
| 07:24:55            | 25.2     | MOS                                |                                    |
| 07:24:57            | 25.3     | MOS                                |                                    |

MOS = MONITOR OUT OF SERVICE

25.3 MOS

CEMDAS Evolution™

07:24:59

Page 10 of 26

| the second se | the second se | the second se | the second se |
|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| en an an Audur Subbary, free greater a Specify the present and a first                                          | コード・ション かくちょうしょう アイアー・ブー・ション エーラー しょうよう しょう・・・ デー・ライア ストラング ふしょ                                                 | 医结肠管 医鼻腔 医鼻腔 医结核 化化合物 化分析 化分析 化化合物 化化合物 化合物 医子宫炎 医外外外的                                                          | المحمد والمحاصر والمحمد والمحمد والمحارك والمحمد والمحمد والمحمد والمحمد والمحمد والمحمد والمحمد والمحمد والمحم |

| Primary Energ | gy Coke  | Scans Report                        | Created on : Aug 18, 2021 08:16:47 |
|---------------|----------|-------------------------------------|------------------------------------|
| East Chicago, | , IN     | 08/18/2021 07:15 - 08/18/2021 07:40 | STACK 201                          |
| 08/18/2021    | OPACITY, | %                                   |                                    |
| 07:25         |          |                                     |                                    |
| 07:25:01      | 25.3 MC  | S                                   |                                    |
| 07:25:03      | 22.9 MC  | S                                   |                                    |
| 07:25:05      | 27.5 MC  | S                                   |                                    |
| 07:25:07      | 32.1 MC  | S                                   |                                    |
| 07:25:09      | 35.7 MC  | S                                   |                                    |
| 07:25:11      | 43.4 MC  | S                                   |                                    |
| 07:25:13      | 43.6 MC  | S                                   |                                    |
| 07:25:15      | 43.6 MC  | S                                   |                                    |
| 07:25:17      | 43.6 MC  | S                                   |                                    |
| 07:25:19      | 43.6 MC  | S                                   |                                    |
| 07:25:21      | 43.6 MC  | S                                   |                                    |
| 07:25:23      | 43.6 MC  | S                                   |                                    |
| 07:25:25      | 43.6 MC  | S                                   |                                    |
| 07:25:27      | 43.6 MC  | S                                   |                                    |
| 07:25:29      | 43.6 MC  | S                                   |                                    |
| 07:25:31      | 43.6 MC  | \$                                  |                                    |
| 07:25:33      | 43.6 MC  | S                                   |                                    |
| 07:25:35      | 43.6 MG  | S                                   |                                    |
| 07:25:37      | 43.6 MC  | S                                   |                                    |
| 07:25:39      | 38.7 MC  | S                                   |                                    |
| 07:25:41      | 32.1 MC  | S                                   |                                    |
| 07:25:43      | 25.9 MC  | S                                   |                                    |
| 07:25:45      | 19.6 MC  | S                                   |                                    |
| 07:25:47      | 18.2 M   | S                                   |                                    |
| 07:25:49      | 18.5 MC  | S                                   |                                    |
| 07:25:51      | 18.5 MG  | S                                   |                                    |
| 07:25:53      | 18,5 MC  | S                                   |                                    |
| 07:25:55      | 18.5 MC  | S                                   |                                    |
| 07:25:57      | 18.5 MC  | S                                   |                                    |

MOS = MONITOR OUT OF SERVICE

18.5 MOS

CEMDAS Evolution™

07:25:59

Page 11 of 26

| Primary Ener | gy Coke    | Scans Report                       | Created on : Aug 18, 2021 08:16:47 |
|--------------|------------|------------------------------------|------------------------------------|
| East Chicago | , IN       | 08/18/2021 07:15 - 08/18/2021 07:4 | ) STACK 201                        |
| 60018-076    | er iktő Si |                                    |                                    |
| 08/18/2021   | OPACI      | Y, %                               |                                    |
| 07:26        | 40.5       | 100                                |                                    |
| 07:26:01     | 18.5       | 100                                |                                    |
| 07:26:03     | 18.6       | 400S                               |                                    |
| 07:26:05     | 18.6       | MOS                                |                                    |
| 07:26:07     | 18.6       | MOS                                |                                    |
| 07:26:09     | 18.6       | MOS                                |                                    |
| 07:26:11     | 18.6       | MOS                                |                                    |
| 07:26:13     | 18.5       | MOS                                |                                    |
| 07:26:15     | 17.0       | MOS                                |                                    |
| 07:26:17     | 13.2       | MOS                                |                                    |
| 07:26:19     | 13.4       | MOS                                |                                    |
| 07:26:21     | 15.1       | MOS                                |                                    |
| 07:26:23     | 18.8       | MOS                                |                                    |
| 07:26:25     | 25.1       | MOS                                |                                    |
| 07:26:27     | 25.3       | MOS                                |                                    |
| 07:26:29     | 25.3       | MOS                                |                                    |
| 07:26:31     | 25.3       | MOS                                |                                    |
| 07:26:33     | 25,3       | MOS                                |                                    |
| 07:26:35     | 25.3       | MOS                                |                                    |
| 07:26:37     | 25.3       | MOS                                |                                    |
| 07:26:39     | 25.3       | MOS                                |                                    |
| 07:26:41     | 25,3       | MOS                                |                                    |
| 07:26:43     | 25.3       | MOS                                |                                    |
| 07:26:46     | 25.3       | MOS                                |                                    |
| 07:26:48     | 25.3       | MOS                                |                                    |
| 07:26:50     | 20.7       | MOS                                |                                    |
| 07:26:52     | 25.0       | MOS                                |                                    |
| 07:26:54     | 29.6       | MOS                                |                                    |
| 07:26:56     | 34.2       | MOS                                |                                    |

MOS = MONITOR OUT OF SERVICE

43.4 MOS

CEMDAS Evolution™

07:26:58

Page 12 of 26

de et de de de la de

| Primary Energy Coke |        | Scans Report                       | Created on : Aug 18, 2021 08:16:47 |
|---------------------|--------|------------------------------------|------------------------------------|
| East Chicag         | o, IN  | 08/18/2021 07:15 - 08/18/2021 07:4 | STACK 201                          |
| 08/18/2021          | OPACIT | Y, %                               |                                    |
| 07:27               |        |                                    |                                    |
| 07:27:00            | 43.7   | 10S                                |                                    |
| 07:27:02            | 43.7   | 10S                                |                                    |
| 07:27:04            | 43.7   | 10S                                |                                    |
| 07:27:06            | 43.7   | 10S                                |                                    |
| 07:27:08            | 43.7   | 10S                                |                                    |
| 07:27:10            | 43.6   | 10S                                |                                    |
| 07:27:12            | 43.6   | 10S                                |                                    |
| 07:27:14            | 43.6   | 10S                                |                                    |
| 07:27:16            | 43.6   | 10S                                |                                    |
| 07:27:18            | 43.6   | 10S                                |                                    |
| 07:27:20            | 43.6   | 10S                                |                                    |
| 07:27:22            | 35.3   | 10S                                |                                    |
| 07:27:24            | 29.0   | 10S                                |                                    |
| 07:27:26            | 23.9   | 10S                                |                                    |
| 07:27:28            | 18.0   | 10S                                |                                    |
| 07:27:30            | 18.5   | 10S                                |                                    |
| 07:27:32            | 18.5   | 10S                                |                                    |
| 07:27:34            | 18.6   | 10S                                |                                    |
| 07:27:36            | 18.6   | 10S                                |                                    |
| 07:27:38            | 18.6 i | 10S                                |                                    |
| 07:27:40            | 18.5   | 10S                                |                                    |
| 07:27:42            | 18.5 i | 10S                                |                                    |
| 07:27:44            | 18.5 ( | 10S                                |                                    |
| 07:27:46            | 18.5   | 10S                                |                                    |
| 07:27:48            | 18.6   | 10S                                |                                    |
| 07:27:50            | 18.6   | 10S                                |                                    |
| 07:27:52            | 18.6   | 10S                                |                                    |
| 07:27:54            | 18.6   | 10S                                |                                    |
| 07:27:56            | 18.6   | 10S                                |                                    |
| 07:27:58            | 18.5   | 105                                |                                    |

Status Code Definitions

MOS = MONITOR OUT OF SERVICE

CEMDAS Evolution™

Page 13 of 26

| Primary Ener | gy Coke  | Scans Report                       | Created on : Aug 18, 2021 08:16:47 |
|--------------|----------|------------------------------------|------------------------------------|
| East Chicago | , IN     | 08/18/2021 07:15 - 08/18/2021 07:4 | 0 STACK 201                        |
| 100000       | 12010130 |                                    |                                    |
| 08/18/2021   | OPACIT   | ,%                                 |                                    |
| 07:28        |          | ~~                                 |                                    |
| 07:28:00     | 18.5     | OS                                 |                                    |
| 07:28:02     | 18.5     | OS                                 |                                    |
| 07:28:04     | 17.8     | OS                                 |                                    |
| 07:28:06     | 15.5     | OS                                 |                                    |
| 07:28:08     | 17.2     | .OS                                |                                    |
| 07:28:10     | 18.9     | OS                                 |                                    |
| 07:28:12     | 21.3     | IOS                                |                                    |
| 07:28:14     | 25.3     | IOS                                |                                    |
| 07:28:16     | 25.3     | IOS                                |                                    |
| 07:28:18     | 25.3     | IOS                                |                                    |
| 07:28:20     | 25.3     | IOS                                |                                    |
| 07:28:22     | 25.3     | 10S                                |                                    |
| 07:28:24     | 25.3     | 10S                                |                                    |
| 07:28:26     | 25.3     | 105                                |                                    |
| 07:28:28     | 25.2     | 10S                                |                                    |
| 07:28:30     | 25.2     | 10S                                |                                    |
| 07:28:32     | 25.2     | 10S                                |                                    |
| 07:28:34     | 25.2     | nos                                |                                    |
| 07:28:36     | 25.2     | AOS                                |                                    |
| 07:28:38     | 24.1     | NOS                                |                                    |
| 07:28:40     | 23.5     | nos                                | *                                  |
| 07:28:42     | 28.0     | NOS                                |                                    |
| 07:28:44     | 32.6     | <i>l</i> os                        |                                    |
| 07:28:46     | 41.1     | MOS                                |                                    |
| 07:28:48     | 43.6     | MOS                                |                                    |
| 07:28:50     | 43.6     | MOS                                |                                    |
| 07:28:52     | 43.6     | MOS                                |                                    |
| 07:28:54     | 43.6     | MOS                                |                                    |
| 07:28:56     | 43.6     | MOS                                |                                    |

MOS = MONITOR OUT OF SERVICE

43.6 MOS

CEMDAS Evolution™

07:28:58

Page 14 of 26

| Primary Energy Coke |       |       | Scans Report                        | Created on : Aug 18, 2021 08:16:47 |
|---------------------|-------|-------|-------------------------------------|------------------------------------|
| East Chicago, IN    |       |       | 08/18/2021 07:15 - 08/18/2021 07:40 | STACK 201                          |
|                     |       |       |                                     |                                    |
| 08/18/2021          | OPACI | ry, % |                                     |                                    |
| 07:29               |       |       |                                     |                                    |
| 07:29:00            | 43.6  | MOS   |                                     |                                    |
| 07:29:02            | 43.6  | MOS   |                                     |                                    |
| 07:29:04            | 43.6  | MOS   |                                     |                                    |
| 07:29:06            | 43.6  | MOS   |                                     |                                    |
| 07:29:08            | 43.6  | MOS   |                                     |                                    |
| 07:29:10            | 43.6  | MOS   |                                     |                                    |
| 07:29:12            | 41.0  | MOS   |                                     |                                    |
| 07:29:14            | 29.7  | MOS   |                                     |                                    |
| 07:29:16            | 23.4  | MOS   |                                     |                                    |
| 07:29:18            | 17.2  | MOS   |                                     |                                    |
| 07:29:20            | 16.2  | MOS   |                                     |                                    |
| 07:29:22            | 18.5  | MOS   |                                     |                                    |
| 07:29:24            | 18.5  | MOS   |                                     |                                    |
| 07:29:26            | 18.5  | MOS   |                                     |                                    |
| 07:29:29            | 18.5  | MOS   |                                     |                                    |
| 07:29:31            | 18.5  | MOS   |                                     |                                    |
| 07:29:33            | 18.5  | MOS   |                                     |                                    |
| 07:29:35            | 18.5  | MOS   |                                     |                                    |
| 07:29:37            | 18.5  | MOS   |                                     |                                    |
| 07:29:39            | 18.5  | MOS   |                                     |                                    |
| 07:29:41            | 18.6  | MOS   |                                     |                                    |
| 07:29:43            | 18.5  | MOS   |                                     |                                    |
| 07:29:45            | 18.5  | MOS   |                                     |                                    |
| 07:29:47            | 18.5  | MOS   |                                     |                                    |
| 07:29:49            | 18.3  | MOS   |                                     |                                    |
| 07:29:51            | 16.2  | MOS   |                                     |                                    |
| 07:29:53            | 17,9  | MOS   |                                     |                                    |
| 07:29:55            | 19.6  | MOS   |                                     |                                    |
| 07:29:57            | 23.0  | MOS   |                                     |                                    |

MOS = MONITOR OUT OF SERVICE

25.3 MOS

CEMDAS Evolution™

07:29:59

Page 15 of 26

| Primary Energ | gy Coke    | Scans Report                        | Created on : Aug 18, 2021 08:16:47 |
|---------------|------------|-------------------------------------|------------------------------------|
| East Chicago  | , IN       | 08/18/2021 07:15 - 08/18/2021 07:40 | STACK 201                          |
| 08/18/2021    | OPACITY, % |                                     |                                    |
| 07:30         |            |                                     |                                    |
| 07:30:01      | 25.3 MOS   |                                     |                                    |
| 07:30:03      | 25.3 MOS   |                                     |                                    |
| 07:30:05      | 25.3 MOS   |                                     |                                    |
| 07:30:07      | 25.3 MOS   |                                     |                                    |
| 07:30:09      | 25.3 MOS   |                                     |                                    |
| 07:30:11      | 25.3 MOS   |                                     |                                    |
| 07:30:13      | 25.3 MOS   |                                     |                                    |
| 07:30:15      | 25.3 MOS   |                                     |                                    |
| 07:30:17      | 25.2 MOS   |                                     |                                    |
| 07:30:19      | 25.2 MOS   |                                     |                                    |
| 07:30:21      | 25.2 MOS   |                                     |                                    |
| 07:30:23      | 25.2 MOS   |                                     |                                    |
| 07:30:25      | 20.8 MOS   |                                     |                                    |
| 07:30:27      | 26.5 MOS   |                                     |                                    |
| 07:30:29      | 31.1 MOS   |                                     |                                    |
| 07:30:31      | 35.7 MOS   |                                     |                                    |
| 07:30:33      | 43.7 MOS   |                                     |                                    |
| 07:30:35      | 43.7 MOS   |                                     |                                    |
| 07:30:37      | 43.7 MOS   |                                     |                                    |
| 07:30:39      | 43.7 MOS   |                                     |                                    |
| 07:30:41      | 43.7 MOS   |                                     |                                    |
| 07:30:43      | 43.6 MOS   |                                     |                                    |
| 07:30:45      | 43.6 MOS   |                                     |                                    |
| 07:30:47      | 43.7 MOS   |                                     |                                    |
| 07:30:49      | 43.7 MOS   |                                     |                                    |
| 07:30:51      | 39.8 MOS   |                                     |                                    |
| 07:30:53      | 31.2 MOS   |                                     |                                    |
| 07:30:55      | 24.9 MOS   |                                     |                                    |
| 07:30:57      | 18.6 MOS   |                                     |                                    |

MOS = MONITOR OUT OF SERVICE

16.2 MOS

07:30:59

CEMDAS Evolution™

Page 16 of 26

| Primary Energy Coke |      |       | Scans R            | Report | Created on : Aug 18, 2021 08:16:47 |
|---------------------|------|-------|--------------------|--------|------------------------------------|
| East Chicago, IN    |      |       | 08/18/2021 07:15 - | ∦      | STACK 201                          |
|                     |      |       |                    |        | STACK 201                          |
| 08/18/2021          | OPAC | TY, % |                    |        |                                    |
| 07:31               |      |       |                    |        |                                    |
| 07:31:01            | 18.5 | MOS   |                    |        |                                    |
| 07:31:03            | 18,5 | MOS   |                    |        |                                    |
| 07:31:05            | 18,5 | MOS   |                    |        |                                    |
| 07:31:07            | 18.5 | MOS   |                    |        |                                    |
| 07:31:09            | 16.7 | MOS   |                    |        |                                    |
| 07:31:11            | 17.3 | MOS   |                    |        |                                    |
| 07:31:13            | 19.0 | MOS   |                    |        |                                    |
| 07:31:15            | 20.7 | MOS   |                    |        |                                    |
| 07:31:17            | 23.1 | MOS   |                    |        |                                    |
| 07:31:19            | 25.3 | MOS   |                    |        |                                    |
| 07:31:21            | 25.3 | MOS   |                    |        |                                    |
| 07:31:23            | 25.3 | MOS   |                    |        |                                    |
| 07:31:25            | 23.7 | MOS   |                    |        |                                    |
| 07:31:27            | 22.7 | MOS   |                    |        |                                    |
| 07:31:29            | 26.6 | MOS   |                    |        |                                    |
| 07:31:31            | 30.7 | MOS   |                    |        |                                    |
| 07:31:33            | 35.4 | MOS   |                    |        |                                    |
| 07:31:35            | 43.6 | MOS   |                    |        |                                    |
| 07:31:37            | 43.6 | MOS   |                    |        |                                    |
| 07:31:39            | 43.6 | MOS   |                    |        |                                    |
| 07:31:41            | 43.6 | MOS   |                    |        |                                    |
| 07:31:43            | 41.6 | MOS   |                    |        |                                    |
| 07:31:45            | 30.6 | MOS   |                    |        |                                    |
| 07:31:47            | 21.4 | MOS   |                    |        |                                    |
| 07:31:49            | 11.5 | MOS   |                    |        |                                    |
| 07:31:51            | 0.0  | MOS   |                    |        |                                    |
| 07:31:53            | 0.0  | MOS   |                    |        |                                    |
| 07:31:55            | 0.0  | MOS   |                    |        |                                    |
| 07:31:57            | 0.0  | MOS   |                    |        |                                    |

MOS = MONITOR OUT OF SERVICE

0.0 MOS

CEMDAS Evolution™

07:31:59

Page 17 of 26

| OPACITY FILTER AUDIT<br>* 6-minute Averages *<br>Accuracy Determination |       |                                                       |                                |               |  |
|-------------------------------------------------------------------------|-------|-------------------------------------------------------|--------------------------------|---------------|--|
| Primary Ener                                                            | rgy   | E. Chicago, IN                                        | Stack 201                      | 8/18/2021     |  |
| 6 Opacity Output from<br>Minute Recording Device<br>Averages            |       | Audit Filter Value Corrected for<br>Path Length (SCF) | (FILTER-MONITOR)<br>Difference | Opacity Error |  |
|                                                                         |       | RM                                                    | (Xi)                           |               |  |
| ZERO                                                                    | 0.00  | 0.00                                                  | 0.00                           | 0.00          |  |
| LOW                                                                     | 18.60 | 18.20                                                 | 0.40                           | 0.40          |  |
| MID                                                                     | 25.30 | 25.10                                                 | 0.20                           | 0.20          |  |
| HIGH                                                                    | 43.70 | 43.90                                                 | -0.20                          | 0.20          |  |
| ZERO                                                                    | 0.00  | 0.00                                                  | 0.00                           | 0.00          |  |
|                                                                         |       |                                                       |                                |               |  |

| Primary Energy Coke<br>East Chicago, IN |                  |                   | Opacity Report     |                         |                    |                    | Created on : Aug 18, 2021 0 |                    |                    |                    |
|-----------------------------------------|------------------|-------------------|--------------------|-------------------------|--------------------|--------------------|-----------------------------|--------------------|--------------------|--------------------|
|                                         |                  |                   |                    | 08/18/2021 - 08/18/2021 |                    | 08/18/2021         | 08/18/2021                  | STACK 201          |                    |                    |
| Hour                                    | Minutes<br>0 - 5 | Minutes<br>6 - 11 | Minutes<br>12 - 17 | Minutes<br>18 - 23      | Minutes<br>24 - 29 | Minutes<br>30 - 35 | Minutes<br>36 - 41          | Minutes<br>42 - 47 | Minutes<br>48 - 53 | Minutes<br>54 - 59 |
| 0                                       | 2.6 SVC          | 2.8 SVC           | 2.7 SVC            | 2.6 SVC                 | 2.7 SVC            | 2.7 SVC            | 2.7 SVC                     | 2.6 SVC            | 2.6 SVC            | 2.8 SVC            |
| 1                                       | 2.6 SVC          | 2.6 SVC           | 2.6 SVC            | 2.6 SVC                 | 2.6 SVC            | 2.6 SVC            | 2.6 SVC                     | 2.7 SVC            | 2.6 SVC            | 2.6 SVC            |
| 2                                       | 2.6 SVC          | 2.6 SVC           | 2.6 SVC            | 2.6 SVC                 | 2.6 SVC            | 2.7 SVC            | 2.6 SVC                     | 2.6 SVC            | 2.6 SVC            | 2.6 SVC            |
| 3                                       | 2.7 SVC          | 2.6 SVC           | 2.6 NSA            | 2.7 SVC                 | 2.6 SVC            | 2.6 SVC            | 2.5 SVC                     | 2.6 SVC            | 2.7 SVC            | 2.6 SVC            |
| 4                                       | 2.6 SVC          | 2.7 SVC           | 2.7 SVC            | 2.6 SVC                 | 2.6 SVC            | 2.7 SVC            | 2.6 SVC                     | 2.6 SVC            | 2.6 SVC            | 2.7 SVC            |
| 5                                       | 2.7 SVC          | 2.6 SVC           | 2.6 SVC            | 2.7 SVC                 | 2.6 SVC            | 2.6 SVC            | 2.7 SVC                     | 2.7 SVC            | 2.8 SVC            | 2.7 SVC            |
| 6                                       | 2.6 SVC          | 2.7 SVC           | 2.6 SVC            | 2.7 SVC                 | 2.7 SVC            | 2.6 SVC            | 2.8 SVC                     | 2.6 SVC            | 2.6 SVC            | 2.6 SVC            |
| 7                                       | 2.6 SVC          | 2.6 SVC           | 2.5 SVC            | 20.5 MOS                | 26.7 MOS           | 9.1 MOS            | 0.0 MOS                     | 6.4 MOS            | 18.6 MOS           | 19.5 MOS           |
| 8                                       | 25.3 MOS         | 25.3 MOS          | 42.8 MOS           | 43.7 MOS                | 11.3 MOS           | 0.0 MOS            | 2.4 MOS                     |                    |                    |                    |

MOS = MONITOR OUT OF SERVICE NSA = NO SAMPLE AVAILABLE SVC = MONITOR IN SERVICE

The average OPACITY, % period average for the day was 2.6 % for 72 periods of valid data. The Fan was in operation for 87 periods The maximum OPACITY, % period average for the day was 2.8 %

There were 15 periods of invalid data

CEMDAS Evolution™

**Opacity Performance Audit** 

Monitoring Solutions, Inc.

# APPENDIX B AUDIT FILTER CERTIFICATION SHEETS



# Leaders in Environmental Monitoring Systems & Services

4404 Guion Rd., Indianapolis, Indiana 46254 Tel: 317.856.9400

# **REPORT OF CERTIFICATION OF NEUTRAL DENSITY AUDIT FILTERS**

| Date of Filter Certification: | March 31, 2021     |
|-------------------------------|--------------------|
| Date of Filter Expiration     | September 30, 2021 |

Filter Set - D

Audit Device / Filter Slot Angle of Incidence Path-Length Correction 10 Degrees 1.000 (Straight Stack)



### **Table 1: Individual Filter Certification Data**

| Serial | Opacity   | Transmittance | Previous    | Change in   |
|--------|-----------|---------------|-------------|-------------|
| Number | Value (%) | (%)           | Opacity (%) | Opacity (%) |
| VT59   | 8,4       | 91.6          | 8.3         | 0.1         |
| VW72   | 18.2      | 81.8          | 18.3        | 0.1         |
| - ZP33 | 25.1      | 74.9          | 25.1        | 0.0         |
| Y645   | 35.8      | 64.2          | 3578        | 0.0         |
| ZC32   | 43.9      | 56.1          | 44.0        | 0.1         |
| YF63   | 59.7      | 40.3          | 59.8        | 0.1         |
| V886   | 86.3      | 13.7          | 86.4        | 0.1         |

Suprave

Labokatory-Based Transmissometer Operator

\*See second page for instrument information and Details of Certification\*

