

Purpose (of the TSOP)

This technical standard operating procedure (TSOP) describes the process used to provide statistical estimations of the percentage of perennial stream miles in the Probabilistic Monitoring Program target basin that support aquatic life use following attainment decisions for Indiana's Integrated Water Monitoring and Assessment Report.

This TSOP should be used by:

This TSOP applies to agency staff in the Office of Water Quality (OWQ) Watershed Assessment and Planning Branch (WAPB) Probabilistic Monitoring Section responsible for providing statistical estimations of the percentage of perennial stream miles supporting aquatic life use in the Probabilistic Monitoring Program target basin.

Authors

Paul McMurray, Senior Environmental Manager Probabilistic Monitoring Section

Scott Zello-Dean, Environmental Manager II Probabilistic Monitoring Section

Authorizing Signatures

I approve and authorize this technical standard operating procedure:

Stacey Sobat, Section Chief OWQ Probabilistic Monitoring Section

Kristen Arnold, Section Chief OWQ Technical and Logistical Services Section

nehau

Marylou Renshaw, Branch Chief OWQ Watershed Assessment and Planning Branch

07/20/2020 Date

1/23 Date

7/23/2020 Date

This technical standard operating procedure is consistent with agency requirements.

Quality Assurance Staff

Quality Assurance Staff IDEM Office of Program Support

24 Jul 2020 Date

Table of Contents

1
1
2
4
5
5
5
. 16
. 18
. 19
. 19
. 19
. 20
. 20
. 20

1.0. Overview Flowchart

2.0. Procedure

2.1. Procedural Flowchart:

2.2. Procedural Steps:

Step 1. Navigate to <u>S:\IGCN\OWQ\WSP\OWM\Integrated Report Data</u> on the Indiana Department of Environmental Management (IDEM) shared computer drive (S-Drive). Locate and open the folder specific to the probabilistic target basin for which the percentage of stream miles supporting aquatic life use estimates are being made:

- <u>East Fork White and Whitewater Basins</u> (also known as the Great Miami River basin)
- Lower Wabash and Kankakee Basins
- Tributaries to The Great Lakes and Ohio River Basins
- Upper Wabash Basin
- West Fork White and Patoka Basins

Once the appropriate target basin folder is open, create a new folder entitled <u>Monitoring Year 20XX</u>, where <u>20XX</u> is the sampling year (e.g., 2018, 2019, 2020, 2021). Save all files created during the calculation process to this new folder.

Step 2. Open a new Excel workbook (.xlsx) and populate row 1 of the first worksheet with the following column headings. Spell each column heading exactly as shown:

Column A – MySite.ID

- Column B Lsite
- Column C SiteName
- Column D Longdd
- Column E Latdd
- Column F My.stratum
- Column G MDCaty
- Column H Weight
- Column I StrahlerOrder
- Column J My.Type
- Column K My.Status
- Column L My.ChemistryStatus
- Column M Fish.Community
- Column N Fish.IBI
- Column O Macro.Community
- Column P Macro.IBI
- Column Q Habitat
- Column R QHEI
- Column S DO
- Column T pH
- Column U Chloride
- Column V Nitrate.and.Nitrite
- Column W Sulfate
- Column X Lead
- Column Y Copper

Column Z – Zinc Column AA – Ammonia Column AB – Cadmium Column AC – Chromium Column AD – Nickel Column AE – Cyanide Column AF – Aluminum Column AG – Selenium Column AH – Nutrients Column AI – Overall.Chemistry Column AJ – Combined.Assessment Name the workbook <u>designstatus.xlsx</u> and save in the <u>Monitoring</u> <u>Year 20XX</u> folder created in Step 1.

Step 3. Navigate to the

<u>S:\IGCN\OWQ\WSP\OWM\RANDOM\Corvallis20XX</u> folder (where <u>20XX</u> refers to the sampling year). Open the <u>AIMS_CorvallisSitesUploadTemplate_XXXX.xlsx</u> workbook, where <u>XXXX</u> refers to the initials of the probabilistic target basin and the IDEM staff which modified the original workbook. Appendices 1 and 2 contain potential target basin names. When performing calculations for sample years 2011-2016, the workbook will be named <u>AIMS_DataUploadTemplate_SitesXXXX.xlsx</u>. Earlier sample

years may not be available in this folder and may require locating the original Corvallis site request documentation.

Step 4. Copy the following data from the <u>DATA</u> worksheet of <u>AIMS_CorvallisSitesUploadTemplate_XXXX.xlsx</u> and paste into the designated columns in <u>designstatus.xlsx</u> created in Step 2. Do not copy data from Row 1 (e.g., the column headings) or any rows beyond Row 101.

AIMS_CorvallisSitesUploadTemplate_XXXX	designstatus
EPA Site Identifier	MySite.ID
Site ID	Lsite
Stream Name	SiteName
Longitude (decimal degree)	Longdd
Latitude (decimal degree)	Latdd
Weight Category	MDCaty
DesignWeightSurvey	Weight
Strahler Order	StrahlerOrder

Complete the following modifications to designstatus.xlsx:

- In the <u>MDCaty</u> column, rename entries of <u>1</u> to <u>1st</u>, <u>2</u> to <u>2nd</u>, <u>3</u> to <u>3rd</u>, and <u>4</u> to <u>4th+</u>
- The <u>My.stratum</u> column contains a number representing the probabilistic target basin chronological sampling order. Based on the year in which sampling was conducted, enter the appropriate number from the <u>My.stratum</u> column in Appendices 1 or 2 into all of the rows of <u>My.stratum</u> column.
- The <u>My.Type</u> column refers to the name of the probabilistic target basin. Enter the name of the probabilistic target basin from the <u>My.Type</u> column in Appendices 1 or 2 into all of the rows of the <u>My.Type</u> column.
- If the <u>Site ID</u> column of <u>AIMS_CorvallisSitesUploadTemplate_XXXX.xlsx</u> is blank, fill in the <u>Lsite</u> column using the information sources described in Step 5.
- Step 5. Locate the work plan created for the probabilistic target basin in the <u>S:\IGCN\OWQ\WSP\OWM\Document\Workplans\20XX</u> folder, where <u>20XX</u> refers to the sampling year. Within the work plan, locate the table listing all potential sites for the probabilistic target basin. In this table, the numbers in the <u>Site #</u> column correspond to the last three digits of the <u>designstatus.xlsx</u>'s <u>MySite.ID</u> column.

Copy the information from the <u>AIMS Site Name</u> column in the probabilistic work plan potential site table into the <u>designstatus.xlsx</u>'s <u>LSite</u> column. The work plan table also contains each site's <u>Site Status</u> (i.e., <u>Target</u>, <u>Approved</u>, or <u>Landowner Denial</u>) determined during reconnaissance activities. During the sampling process, sites may be subsequently rejected if, for example, the site goes dry.

Using the spreadsheets and notes compiled for and taken during the Probabilistic Monitoring Program aquatic life use assessments, enter the appropriate code for each site into the <u>designstatus.xlsx</u>'s <u>My.status</u> column. Spreadsheets and notes are available from the Integrated Report coordinator; staff responsible for the fish, macroinvertebrate, and water chemistry sampling programs; Probabilistic Monitoring Program site sampling file folders; and AIMSII database queries. Site status designations derived post sampling from the Probabilistic Monitoring Program aquatic life use assessment meetings' notes, Probabilistic Monitoring Program site sampling file folders, and AIMSII database queries supersede the Probabilistic Monitoring Program work plan's initial designations.

TS – target site; a site where both fish and macroinvertebrate communities and three rounds of water chemistry data were collected.

SBNC – sampled biology, no chemistry; a site where fish and macroinvertebrate communities were collected, but not three rounds of water chemistry sampling.

SFNCM – sampled fish, no chemistry or macroinvertebrates; a site where only fish community sampling occurred, but not macroinvertebrate community and three rounds of water chemistry sampling.

SMNCF – sampled macroinvertebrates, no chemistry or fish; a site where only macroinvertebrate community sampling occurred, but not fish community and three rounds of water chemistry sampling.

SCNB – sampled chemistry, no biology; a site where three rounds of water chemistry data sampling occurred, but not fish and macroinvertebrate communities sampling.

SCFNM – sampled chemistry and fish, no macroinvertebrates; a site where three rounds of water chemistry data and fish community sampling occurred, but not macroinvertebrate community sampling.

SCMNF – sampled chemistry and macroinvertebrates, no fish; a site where three rounds of water chemistry data and macroinvertebrate community sampling occurred, but not fish community sampling.

PB – physical barrier; access to site is blocked (e.g., logjam, beaver dam).

OT – Other; a site rejected for safety reasons.

NN – not needed; an approved site not sampled or potential target site which could not be assessed by the reconnaissance deadline.

LD – landowner denial; a site in which the landowner does not grant IDEM permission to collect samples either during the

reconnaissance process or at any point during the sampling season.

NT – nontarget; a site rejected for a reason other than landowner denial. Potential rejection reasons include the site is located in a backwater, oxbow, wetland, a tiled section of the stream, or the stream was dry during reconnaissance or subsequently went dry during the sampling season.

Step 6. Copy site status designations from the <u>designstatus.xlsx</u>'s <u>My.status</u> column to the <u>designstatus.xlsx</u>'s <u>My.ChemistryStatus</u> column. Change site status designations as follows:

My.Status designation	My.Chemistry.Status designation
TS, LD, NT, PB, OT and NN	TS, LD, NT, PB, OT and NN (No
	change)
SCNB, SCFNM and SCMNF	TS
SBNC, SFNCM and SMNCF	NT

Step 7. Use the data described in Step 5 to enter the Index of Biotic Integrity (IBI) score in the <u>designstatus.xlsx</u>'s <u>Fish.IBI</u> column, for fish community samples collected at probabilistic sample sites. If more than one IBI score is available for a site (e.g., a revisit sample collected for QA/QC purposes), use the IBI score used to derive the pass or fail status of the site. If probabilistic monitoring staff used BPJ (best professional judgement) to pass an otherwise failing sample use the status indicated in notes taken during the Probabilistic Monitoring Program aquatic life use assessment meetings.

Use the <u>Fish.IBI</u> column scores to enter one of the following in the <u>designstatus.xlsx</u>'s <u>Fish.Community</u> column:

- <u>I</u> (impaired) for an IBI score less than 36.
- <u>NI</u> (not impaired) for an IBI score equal to or greater than 36.
- <u>NA</u> (not applicable) if a fish community IBI score is not available for the site.
- Step 8. Use the data described in Step 5 to enter the macroinvertebrate Index of Biotic Integrity (mIBI) score in the <u>designstatus.xlsx</u>'s <u>Macro.IBI</u> column for macroinvertebrate community samples collected from probabilistic sample sites. If more than one mIBI score is available (e.g. a duplicate sample collected for QA/QC purposes), use the mIBI score used to derive the site's pass or fail status. If probabilistic monitoring staff used BPJ (best professional judgement) to pass an otherwise failing sample use

the status indicated in notes taken during the Probabilistic Monitoring Program aquatic life use assessment meetings.

Use the <u>designstatus.xlsx</u>'s <u>Macro.IBI</u> column scores to enter one of the following in the <u>designstatus.xlsx</u>'s <u>Macro.Community</u> column:

- <u>I</u> (impaired) for a mIBI score less than 36.
- <u>NI</u> (not impaired) for a mIBI score equal to or greater than 36.
- <u>NA</u> (not applicable) if a macroinvertebrate community mIBI score is not available for the site.
- Step 9. Use the data described in Step 5 to enter the Qualitative Habitat Evaluation Index (QHEI) score associated with the fish community sample entered in Step 5 in the <u>designstatus.xlsx</u>'s <u>QHEI</u> column. When using a fish community revisit sample to derive a site's pass or fail status, use the QHEI score associated with the revisit sample.

Use the <u>designstatus.xlsx</u>'s <u>QHEI</u> column scores to enter one of the following in the <u>designstatus.xlsx</u>'s <u>Habitat</u> column:

- <u>I</u> (impaired) for a QHEI score less than 51.
- <u>NI</u> (not impaired) for a QHEI score equal to or greater than 51.
- <u>NA</u> (not applicable) if a QHEI score is not available for the site.
- Step 10. Use the data described in Step 5 to enter the following impairment statuses for chemical parameters into the <u>designstatus.xlsx</u>'s <u>DO</u> (dissolved oxygen), <u>pH</u>, <u>Chloride</u>, <u>Nitrate.And.Nitrite</u>, <u>Sulfate</u>, <u>Lead</u>, <u>Copper</u>, <u>Zinc</u>, <u>Ammonia</u>, <u>Cadmium</u>, <u>Chromium</u>, <u>Nickel</u>, <u>Cyanide</u>, <u>Aluminum</u>, <u>Selenium</u>, and <u>Nutrients</u> columns:
 - <u>I</u> (impaired)
 - <u>NI</u> (not impaired)
 - <u>NA</u> (not applicable) if three rounds of water chemistry sampling were not conducted at a site, which is indicated in notes taken during the Probabilistic Monitoring Program aquatic life use assessment meetings.

If all of a site's chemical parameter results are <u>NI</u>, enter <u>NI</u> in the <u>designstatus.xlsx</u>'s <u>Overall.Chemistry</u> column. If any one of the individual chemical parameter results for a site are <u>I</u>, enter <u>I</u> into the <u>Overall.Chemistry</u> column. If three rounds of water chemistry

sampling were not conducted, enter <u>NA</u> in the <u>Overall.Chemistry</u> column.

Step 11. If all of the results in the <u>designstatus.xlsx</u>'s <u>Fish.Community</u>, <u>Macro.Community</u>, and <u>Overall.Chemistry</u> columns for a site are <u>NI</u>, enter <u>NI</u> in the <u>designstatus.xlsx</u>'s <u>Combined.Assessment</u> column. If any one of the columns' results is <u>I</u>, enter <u>I</u> in the <u>Combined.Assessment</u> column. If any one of the columns' results is <u>NA</u>, enter <u>NA</u> in the <u>Combined.Assessment</u> column.

Save the <u>designstatus.xlsx</u> as both an Excel Worksheet (.xlsx) and as a Text (Tab delimited) (.txt) file within the <u>Monitoring Year</u> <u>20XX</u> folder created in Step 1. Exit Excel.

- Step 12. Open R 3.6.1 and load the *spsurvey* package. Appendix 3 contains instructions on downloading and installing R 3.6.1 and installing and loading the *spsurvey* package.
- Step 13. Enter the following italicized commands into the R Console at the command line prompt. The 2014 Probabilistic Monitoring Program project in the Great Miami River basin (Appendix 4) is used as an example, for the remainder of this TSOP. These command lines may be typed in, exactly as written below, or copied and pasted into the command line of the R Console. Enter commands singly and press Enter after each command line is complete. If a command is written in this TSOP over multiple lines, copy and paste each line of text individually. Additional instructions or explanations for a command follow the # sign and do not alter the command if entered into the R Console. Sections of the commands in bold font are dependent upon the target basin's My.type name and framesize (Appendices 1 and 2).

library(spsurvey) # Loads the *spsurvey* package.

framesize <- **2330.09** # The <u>framesize</u> value varies dependent upon the basin and the year sampled. U.S. EPA documentation letters provide a basin's <u>framesize</u> value, summarized in Appendices 1 and 2.

names(framesize) <- '**GreatMiamiRiver**' # The <u>names</u> value varies dependent upon the basin sampled. U.S. EPA documentation letters provide a basin's <u>names</u> value, summarized in Appendices 1 and 2.

setwd("S:/IGCN/OWQ/WSP/OWM/Integrated Report Data/East Fork White and Whitewater Basins/Monitoring Year 2014") # Change <u>East Fork White and Whitewater Basins</u> and <u>Monitoring</u> <u>Year 2014</u> to the correct basin name and sampling year. Ensure that the words in the basin name are separated by spaces and spelled correctly. U.S. EPA documentation letters provide a basin's name and sampling year, summarized in Appendices 1 and 2.

DesignStatus <- read.table("designstatus.txt",header = TRUE, sep = "\t", na.strings = "NA", dec = ".", strip.white = TRUE)

names(DesignStatus)

tst <- !DesignStatus\$My.Status=='NN'

DesignStatus <- data.frame(DesignStatus[tst,])</pre>

tmp <- marinus(DesignStatus\$Latdd,DesignStatus\$Longdd)</pre>

DesignStatus\$xmarinus <- tmp[,'x']</pre>

DesignStatus\$ymarinus <- tmp[,'y']

sites <- rep(TRUE,nrow(DesignStatus))</pre>

DesignStatus\$final.wt <-

adjwgt(sites,DesignStatus\$Weight,DesignStatus\$My.Type,frame size) # These three lines should be entered onto one R command line with "framesize" as a whole word.

sum(DesignStatus\$Weight)

sum(DesignStatus\$final.wt) # The command's output should equal the <u>framesize</u> entered into the first command line.

write.table(DesignStatus,

file="designstatus.csv",sep=",",row.names=FALSE) # Creates a Comma Separated Values (.csv) Excel file titled <u>designstatus.csv</u> in the <u>Monitoring Year 20XX</u> folder.

designstatus <read.table('designstatus.csv',sep=',',header=TRUE)</pre>

sites <-

data.frame(siteID=designstatus\$MySite.ID,Use=rep(TRUE,nrow(designstatus)))

subpop <- data.frame(siteID=designstatus\$MySite.ID, **GreatMiamiRiver**=designstatus\$My.Type) # Change <u>GreatMiamiRiver</u> to the correct basin name. U.S. EPA documentation letters provide the basin name, summarized in Appendices 1 and 2. dsgn <- data.frame(

siteID=designstatus\$MySite.ID,stratum=designstatus\$My.stratu m,wgt=designstatus\$final.wt,xcoord=designstatus\$xmarinus,yco ord=designstatus\$ymarinus) # These three lines should be entered onto one R command line with "stratum" and "ycoord" as whole words.

designstatus\$StatusTNT <- designstatus\$My.Status

levels(designstatus\$StatusTNT) <-</pre>

list(T=c('TS', 'SBNC', 'PB', 'LD', 'SCNB', 'SFNCM', 'SCMNF', 'SCFNM'),*NT=c('NT'))* # If a new sample type abbreviation is created (see Step 10), enter it into this command line bracketed by apostrophe marks.

data <-

data.frame(siteID=designstatus\$MySite.ID,CombinedStatus=desi gnstatus\$My.Status,StatusTNT=designstatus\$StatusTNT) # These three lines should be entered onto one R command line with "designstatus" as a whole word.

framelen <- c('**GreatMiamiRiver**'=2330.09) # Change <u>GreatMiamiRiver</u> and <u>2330.09</u> to the correct basin name and framesize. U.S. EPA documentation letters provide the basin's name and framesize, summarized in Appendices 1 and 2.

sitestatussum <- cat.analysis(sites, subpop, dsgn, data, popsize=list(**GreatMiamiRiver**=framelen)) # Change <u>GreatMiamiRiver</u> to the correct basin name. U.S. EPA documentation letters provide the basin's name, summarized in Appendices 1 and 2.

write.table(sitestatussum, file="sitestatussum.csv", sep=",",col.names=NA) # Creates an Excel file titled <u>sitestatussum.csv</u> in the <u>Monitoring Year 20XX</u> folder summarizing the number of sites found in each of the category types listed in Step 10.

sites <-

data.frame(siteID=designstatus\$MySite.ID,Use=designstatus\$M y.Status=='TS') # These three lines should be entered onto one R command line with "My.Status" as a whole word.

data <-

data.frame(siteID=designstatus\$MySite.ID,Status=designstatus\$ Combined.Assessment) conditionsum <- cat.analysis(sites,subpop,dsgn,data)

write.table(conditionsum, file="allconditionsum.csv", sep = ",",col.names=NA) # Creates an Excel file titled allconditionsum.csv in the Monitoring Year 20XX folder.

conditionsum90 <- cat.analysis(sites,subpop,dsgn,data,conf=90)</pre>

write.table(conditionsum90, file="allconditionsum90.csv", sep = ",",col.names=NA) # Creates an Excel file titled <u>allconditionsum90.csv</u> in the <u>Monitoring Year 20XX</u> folder.

savehistory("**Great Miami 2014** - R Analyses.txt") # Creates a text file of the commands entered into the current R session which can be opened using Notepad, WordPad, or Word. Change <u>Great Miami 2014</u> to the correct basin name and sampling year. U.S. EPA documentation letters provide the basin's name, summarized in Appendices 1 and 2.

savehistory("**Great Miami 2014** - *R* Analyses.*R*data") # Creates an R Workspace data file. To open the file through the R Console, click <u>File</u>, then <u>Open Script</u>. Locate the file directory, select the file (may require searching for <u>All files(*.*)</u>). Click <u>Open</u>. Change <u>Great Miami 2014</u> to the correct basin name and sampling year. U.S. EPA documentation letters provide the basin's name, summarized in Appendices 1 and 2.

- Step 14. Open a new Word document. Highlight all text within the R Console (commands and output). Right click and select <u>Copy</u>. Within the Word document, right click and select <u>Paste</u>. Save the Word document as <u>Basin Year – R Analyses</u>, where the <u>Basin</u> and <u>Year</u> reflect the sampled probabilistic target basin and the sampling year. Exit the Word document and the R Console.
- Step 15. Navigate to <u>S:\IGCN\OWQ\WSP\OWM\Integrated Report Data</u>. Locate and open the folder <u>20XX Integrated Report as Submitted</u> to U.S. EPA where <u>20XX</u> refers to the year in which the report is submitted. Appendix 3 contains the appropriate report for the year in which the basin of interest was sampled. Open <u>20XX</u> <u>Appendix C Comprehensive ALUS.xls</u> where <u>20XX</u> refers to the year in which the report is submitted to U.S. EPA. If the necessary <u>20XX Integrated Report...</u> folder is missing, create a new folder in <u>S:\IGCN\OWQ\WSP\OWM\Integrated Report Data</u> with the title <u>20XX Integrated Report as Submitted to U.S. EPA.</u> <u>20XX</u> refers to the year in which the report is submitted to U.S. EPA. Copy the <u>20XX Appendix C Comprehensive ALUS.xls</u> from

the previous <u>20XX Integrated Report...</u> folder into this location and change the <u>20XX</u> in the file name to the year in which the report is submitted.

Step 16. Open <u>allconditionsum.csv</u> and <u>allconditionsum90.csv</u> created in Step 13 and saved in the <u>Monitoring Year 20XX</u> folder created in Step 1. Cells G2 and G3 in the <u>Estimate.P</u> column of both files represent the probabilistic target basin's percentage of stream miles not attaining and attaining aquatic life uses, respectively. In the <u>20XX Appendix C Comprehensive ALUS.xls</u> opened in Step 15, enter these values, rounded to the nearest whole number, into the sampled target basin's row in columns G (% Attaining) and H (% Not Attaining).

Calculate the 95% confidence interval by subtracting cell I2 from cell G2 in <u>allconditionssum.csv</u>. Enter the result rounded to the nearest whole number into the sampled target basin's row in column J (<u>Confidence Interval (%)</u>) of the <u>20XX Appendix C</u> <u>Comprehensive ALUS.xls</u>.

Calculate the 90% confidence interval by subtracting cell I2 from cell G2 in the <u>allconditionssum90.csv</u>. Enter the result rounded to the nearest whole number into the sampled target basin's row in column J (<u>Confidence Interval (%)</u>) of the <u>20XX Appendix C</u> <u>Comprehensive ALUS.xls</u>.

Update Column I (<u>Confidence Level (%)</u>) of the <u>20XX Appendix</u> <u>C Comprehensive ALUS.xls</u> file for the sampled target basin's row to reflect the number (n=XX) of probabilistic sites considered <u>Target</u> sites. The number is found in cell F4 of the <u>allconditionsum.csv</u> and <u>allconditionsum90.csv</u>.

Update Column E (<u>Year Assessed</u>) of the <u>20XX Appendix C</u> <u>Comprehensive ALUS.xls</u> for the sampled target basin's row to reflect the year in which the basin's assessment meetings occurred, usually the year after sampling. Save <u>20XX Appendix</u> <u>C Comprehensive ALUS.xls</u> and close all open Excel files.

2.3. Related Technical Issues:

A. Health and Safety Warnings:

Not applicable. This TSOP does not involve travel or field work. All steps are to be completed in an office setting on a computer workstation.

B. Cautions:

- The R script (detailed in Step 13) used to provide estimations of the percentage of perennial stream miles in the Probabilistic Monitoring Program target basin supporting or not supporting aquatic life use was provided to IDEM by the U.S. EPA. Certain sections of the R script change, with the location and year in which sampling was conducted or the categories used.
- Review notes made during Probabilistic Monitoring Program assessments to ensure the impairment designation made during assessments matches the impairment entry made in the above fish or macroinvertebrate columns. Impairment designations using best professional judgment (BPJ) may pass a site with a failing IBI or mIBI score. BPJ designated sites may occur when staff believe the presence of one or more rare, sensitive, or intolerant taxa may provide justification for passing the sample, in spite of a failing IBI or mIBI score.
- The <u>framesize</u> of the target basin varies slightly between sampling years due to the increased resolution in the National Hydrography Dataset (NHD) used to calculate the values. Always use the <u>framesize</u> associated with the U.S. EPA site draw for the sampling year and target basin. The location of U.S. EPA documentation letters with probabilistic site draws are summarized in Appendix 2.
- Ensure the working directory (i.e. the <u>Monitoring Year 20XX</u> folder specified in the third command line of the R script) is correct for the area for which calculations are being made. Selecting the wrong directory can result in files produced during previous aquatic life use calculations (i.e. <u>designstatus.xlsx</u>) being accidentally overwritten.
- Ensure the working directory path command line uses backward slashes ("/") or two forward slashes("\\") to indicate folder divisions, instead of the default single forward slash ("\").
- C. Interferences:

Not applicable.

- D. Calibration:
 - Staff determining aquatic life use estimations for the first time should attempt to duplicate the results of previous estimations obtained by trained staff.
- E. Troubleshooting:

- R is a free software environment for statistical computing and graphics available at https://www.r-project.org/. The R website provides manuals (<u>https://cran.r-project.org/manuals.html</u>) and FAQs (<u>https://cran.r-project.org/doc/FAQ/R-FAQ.html</u>) related to installing and operating R.
- Additional information about the *spsurvey* package can be found at https://cran.r-project.org/web/packages/spsurvey/index.html
- If a command is entered into R incorrectly, an error message will appear in the line below the command. Pressing the up (↑) arrow on the keyboard scrolls through the previous command lines. Fix and resubmit the command by pressing <u>Enter</u>. Common sources of errors include the addition of spaces between portions of the command, incorrect capitalization of a letter or misentered alphanumeric characters. In general, a space should always be inserted before and after an assignment operator (<-).
- If <u>R Analyses.txt</u> and <u>R Analyses.Rdata</u> contain lines of code from a previous R session, search the previous working directory. Find the location by entering *getwd()* into the R command line. Delete the file titled <u>.Rhistory</u> in the working directory. Then run the Step 13 commands again.

3.0. Roles

3.1. Responsibilities:

- A. Probabilistic Monitoring Program Coordinator
 - 1. Provide a calculation of target basin aquatic life use estimations.
 - 2. Create and maintain notes from the Aquatic Life use assessment meetings, and make the notes available for use in calculating target basin aquatic life use estimations.
- B. IDEM Integrated Report Coordinator
 - 1. Create and maintain notes from the aquatic life use assessment meetings and make the notes available for use in calculating target basin aquatic life use estimations.
- C. Probabilistic Monitoring Section Chief
 - 1. Provide a second calculation of target basin aquatic life use estimations.
 - 2. Designate a Probabilistic Monitoring Section staff to conduct a second calculation of target basin aquatic life use estimations.

3.2. Training requirements:

A. AIMSII database management

- 1. Probabilistic Monitoring Program Coordinator
- 2. Probabilistic Monitoring Section Chief
- B. R statistical program use
 - 1. Probabilistic Monitoring Program Coordinator
 - 2. Probabilistic Monitoring Section Chief

4.0. List forms, equipment, and/or software to be used

4.1. Forms

Not applicable.

4.2. Equipment:

A. Computer workstation

4.3. Software:

- A. AIMSII database
- B. R statistical program

5.0. Records Management

The process outlined in the TSOP results in the creation of several Excel files (designstatus, sitestatussum, allconditionsum, allconditionsum90, 20XX Appendix C Comprehensive ALUS), text files and Word documents. Electronic files are stored in <u>S:\IGCN\OWQ\WSP\OWM\Integrated Report Data</u> folders specific to the target basin and sampling year. Data generated by this process is included in the Integrated Report submitted to U.S. EPA. Physical copies of the Aquatic Life Use Assessment meeting notes are kept with the Probabilistic Target Basin sampling site folders. These folders are maintained at the IDEM WAPB offices until they are scanned and uploaded into Virtual File Cabinet.

6.0. Definitions

- 6.1. "Assessment Information Management System database (AIMSII database)" IDEM database containing information related to water chemistry; aquatic habitat; macroinvertebrate, fish, and algae communities; fish tissue analyses; sediments; and E. coli bacteria data collected by agency staff from watershed sampling events.
- **6.2.** "L-Site" A unique Site ID generated by the AIMSII database for each sampling site, and linked with location information (stream name, description, latitude, longitude, county, HUC12, HUC14, etc.).
- **6.3.** "Quality control" The overall system of technical activities that measures the attributes and performance of a process, item, or service against

defined standards to verify that they meet the stated requirements established by the customer; operational techniques and activities that are used to fulfill requirements for quality. In other words, QC involves measuring the "thing produced" against a standard to ensure it is a quality product that meets the identified need.

- **6.4.** "Reconnaissance" Obtaining information about a site through visual observations, investigating routes to safely access the site, and gathering property owner information and access permission.
- **6.5.** "Site number" The designated program area specific numeral given to an environmental location of interest.

7.0. Quality Assurance / Quality Control

New WAPB staff should review this TSOP prior to calculating statistical estimations of the percentage of perennial stream miles in the Probabilistic Monitoring Program target basin supporting or not supporting aquatic life use. After the estimations have been completed by the Probabilistic Monitoring Program coordinator, a second WAPB staff member (such as the Probabilistic Monitoring Section chief or designee) reviews the data within <u>designstatus.xlsx</u> and calculates the estimate of stream miles supporting aquatic life use. Discuss and resolve any discrepancies before the data is finalized.

8.0. References

- 8.1. (IDEM 2020). Office of Water Quality Notice of Public Comment Period for the 2020 List of Impaired Waters and Consolidated Assessment and Listing Methodology under Section 303(d) of the Clean Water Act Appendix 1: IDEM's 2020 Consolidated Assessment and Listing Methodology (CALM). Office of Water Quality, Indiana Department of Environmental Management, Indianapolis, Indiana.
- **8.2.** (R Core Team 2014). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.

9.0. Appendices

Appendix 1 – Summary of previous aquatic life use assessments from monitoring years 1996 – 2018

Appendix 2 – Summary of locations of Probabilistic Monitoring Program documentation files

Appendix 3 – Installing R 3.6.1 and loading the *spsurvey* package

Appendix 4 – R output from the calculation of aquatic life use support estimates for the 2014 Great Miami River Basin Probabilistic Monitoring project

Appendix 1 – Summary of previous aquatic life use assessments from monitoring years 1996 – 2018

Basin Assessed	HUCs Sampled	Basin Size (miles)	Round	My.stratum	Му.Туре	Frame Size (km)	Year Sampled	Year Assessed	Data Types Used in Assessment	Percent Attaining	Percent Not Attaining	N sampled	95% Confidence Interval			
West Fork (White River (05120201	4275	1st	1	West Fork White River	5974.82	1996	1997	Biological	47%	53%	31	<u>+</u> 17%			
	05120203	4275	2nd	7	WestForkWhiteRiver	5974.82	2001	2003	Biological Chemical	67%	33%	36	<u>+</u> 15%			
		4275	3rd	1	WestForkWhiteRiver	6074.201	2006	2008	Biological Chemical	51%	49%	38	<u>+</u> 17%			
		3774	4th	27	WestForkWhiteRiver	6074.201	2011	2013	Biological Chemical	71%	29%	38	<u>+</u> 15%			
East Fork 0 White River 0 0 0 0	05120204	4856	1st	2	East Fork White River	6802.39	1997	1998	Biological	40%	60%	32	<u>+</u> 17%			
	05120206 05120207	4856	2nd	9	EastForkWhite	6802.385	2002	2004	Biological Chemical	73%	27%	34	<u>+</u> 11%			
	05120208	4856	3rd	3	EastForkWhiteRiver	6959.485	2007	2009	Biological Chemical	35%	65%	32	<u>+</u> 15%			
		4325	4th	28	EastForkWhite	6960.41	2013	2014	Biological Chemical	61%	39%	37	<u>+</u> 15%			
Great Miami	05080001 05080002 05080003	1621	1st	2	Whitewater	2270.02	1997	1998	Biological	77%	23%	19	<u>+</u> 20%			
		1621	2nd	8	Whitewater	2270.018	2002	2004	Biological Chemical	90%	10%	26	<u>+</u> 10%			
		1621	3rd	4	Whitewater	2330.508	2007	2009	Biological Chemical	70%	30%	38	<u>+</u> 14%			
		1621	4th	30	GreatMiamiRiver	2330.09	2014	2015	Biological Chemical	78%	22%	38	<u>± 13%</u>			
Upper Wabash	05120101	6632	1st	3	Upper Wabash	9548.06	1998	1999	Biological	52%	48%	48	<u>+</u> 16%			
River	05120102 05120103 05120104 05120105 05120106 05120107	05120103 05120104 05120105 05120105	05120103 05120104 05120105 05120106 05120107	6632	2nd	10	UpperWabash	9548.056	2003	2005	Biological Chemical	25%	75%	37	<u>+</u> 14%	
				05120105	05120105 05120106	05120105 05120106 05120107	6632	3rd	22	UpperWabash	9904.22	2008	2010	Biological Chemical	29%	71%
		6632	4th	31	UpperWabashRiver	9904.92	2015	2016	Biological Chemical	56%	44%	36	<u>± 16%</u>			
Lower Wabash	05120108	5306	1st	4	Lower Wabash	7601.42	1999	2002	Biological	64%	36%	39	<u>+</u> 15%			
River	05120103 05120110 05120111	5306	2nd	12	LowerWabash	7601.418	2004	2006	Biological Chemical	58%	42%	34	<u>+</u> 15%			
	05120113	5306	3rd	24	LowerWabash	7474.01	2009	2011	Biological Chemical	59%	41%	38	<u>+</u> 17%			
		5306	4th	32	LowerWabashRiver	7625.33	2016	2017	Biological Chemical	43%	57%	37	<u>± 14%</u>			

Appendix 1 – Summary of previous aqua	tic life use assessments from	monitoring years 1996 – 2018 (cont.)
---------------------------------------	-------------------------------	--------------------------------------

Basin Assessed	HUCs Sampled	Basin Size (miles)	Round	My.stratum	Му.Туре	Frame Size (km)	Year Sampled	Year Assessed	Data Types Used in Assessment	Percent Attaining	Percent Not Attaining	N sampled	95% Confidence Interval			
Kankakee River	07120001	3958	1st	4	Kankakee	5606.33	1999	2002	Biological	47%	53%	41	<u>+</u> 16%			
	07120003	3958	2nd	11	Kankakee	5692.522	2004	2006	Biological Chemical	54%	46%	36	<u>+</u> 15%			
		3958	3rd	23	Kankakee	5768.03	2009	2011	Biological Chemical	42%	58%	38	<u>+</u> 21%			
		3958	4th	33	KankakeeRiver	5768.42	2017	2018	Biological Chemical	41%	59%	38	<u>+</u> 14%			
Great Lakes	04040001	4051	1st	5	Great Lakes	5431.33	2000	2002	Biological	20%	80%	38	<u>+</u> 10%			
Thoulanes	04100003 04100004 04100005 04100007	4051	2nd	13	GreatLakes	5431.33	2005	2007	Biological Chemical	42%	58%	37	<u>+</u> 14%			
		3535	3rd	25	GreatLakes	5688.299	2010	2013	Biological Chemical	18%	82%	37	<u>+</u> 11%			
		3535	4th	34	GreatLakesTribs	5730.02	2018	2019	Biological Chemical	20%	80%	37	<u>+</u> 11%			
Ohio River Tributaries	05090203	3825	1st	5	Ohio River	5273.18	2000	2002	Biological	29%	71%	41	<u>+</u> 13%			
Tibularies	05140104 05140201 05140202	3825	2nd	14	OhioRiver	5273.18	2005	2007	Biological Chemical	24%	76%	37	<u>+</u> 11%			
		05140202	05140202	05140202	3333	3rd	26	OhioRiver	5364.092	2010	2013	Biological Chemical	24%	76%	34	<u>+</u> 12%
			3333	4th	35	OhioRiverTribs		2019	2020	Biological Chemical						
Patoka River	05120209	797	2nd	6	Patoka	1080.3	2001	2003	Biological Chemical	37%	63%	26	<u>+</u> 15%			
		797	3rd	2	PatokaRiver	1150.216	2006	2008	Biological Chemical	28%	72%	37	<u>+</u> 14%			
		714	4th	27	PatokaRiver	1149.3	2012	2014	Biological Chemical	12%	88%	38	<u>+</u> 11%			

Sample Round	Sample Year	My.stratum	Му.Туре	framesize	Documentation File Name	Documentation File Location	Integrated Report
1st	1996	1	West Fork White River	5974.82			
1st	1997	2	East Fork White River	6802.39			
1st	1997	2	Whitewater	2270.02			
1st	1998	3	Upper Wabash	9548.06			
1st	1999	4	Kankakee	5606.33			
1st	1999	4	Lower Wabash	7601.42			
1st	2000	5	Great Lakes	5431.33			
1st	2000	5	Ohio River	5273.18			
2nd	2001	6	Patoka	1080.3			
2nd	2001	7	WestForkWhiteRiver	5974.82			
2nd	2002	8	Whitewater	2270.018			
2nd	2002	9	EastForkWhite	6802.385			
2nd	2003	10	UpperWabash	9548.056			
2nd	2004	11	Kankakee	5692.522			
2nd	2004	12	LowerWabash	7601.418			
2nd	2005	13	GreatLakes	5431.33			
2nd	2005	14	OhioRiver	5273.18			
3rd	2006	1	WestForkWhiteRiver	6074.201	IN_StreamDesignDocumentation_2006wc.pdf	S:\IGCN\OWQ\WSP\OWM\RANDOM\Corvallis 3rd Cycle Draw	2010
ard	2006	2	Potoko Piwor	1150 216	IN Stream Design Desumentation 2006 we add	S:\IGCN\OWQ\WSP\OWM\RANDOM\Corvallis	2010
310	2000	2	Fallokartiver	1150.216	IN_StreamDesignDocumentation_2006wc.pdf	S:\IGCN\OWQ\WSP\OWM\RANDOM\Corvallis	2010
3rd	2007	3	EastForkWhiteRiver	6959.485	IN_StreamDesignDocumentation_2006wc.pdf	3rd Cycle Draw	2010
3rd	2007	4	Whitewater	2330.508	IN_StreamDesignDocumentation_2006wc.pdf	S:\\GCN\OWQ\WSP\OWM\RANDOM\Corvallis 3rd Cycle Draw	2010
3rd	2008	22	UpperWabash	9904.22	IN StreamDesignDocumentation 2006wc.pdf	S:\IGĆN\OWQ\WSP\OWM\RANDOM\Corvallis 3rd Cycle Draw	2012
Qued	2000	00	Kashakas	5700.00	IN Stream Design 2006-10	S:\IGCN\OWQ\WSP\OWM\RANDOM\Corvallis	0040
310	2009	23	Капкакее	5768.03	Documentation_update07.pdf	S:\IGCN\OWQ\WSP\OWM\RANDOM\Corvallis	2012
3rd	2009	24	LowerWabash	7474.01	IN_StreamDesignDocumentation_2006wc.pdf	3rd Cycle Draw	2012
3rd	2010	25	GreatLakes	5688.299	IN Stream Design 2006-10 Documentation update07.pdf	S:\IGCN\OWQ\WSP\OWM\RANDOM\Corvallis 3rd Cycle Draw	2014
3rd	2010	26	OhioRiver	5364.092	IN_StreamDesignDocumentation_2006wc.pdf	S:\IGĆN\OWQ\WSP\OWM\RANDOM\Corvallis 3rd Cycle Draw	2014

Appendix 2 – Summary of locations of Probabilistic Monitoring Program documentation files

Sample Round	Sample Year	My.stratum	Му.Туре	framesize	Documentation File Name	Documentation File Location	Integrated Report
					IN Stream WestWhite Patoka Design 2011-12	S:\IGCN\OWQ\WSP\OWM\RANDOM\Corvallis	
4th	2011	27	WestForkWhiteRiver	6074.201	Documentation.pdf	4th Cycle Draw\WestWhite&Patoka2	2014
					IN Stream WestWhite Patoka Design 2011-12	S:\IGCN\OWQ\WSP\OWM\RANDOM\Corvallis	
4th	2012	27	PatokaRiver	1149.3	Documentation.pdf	4th Cycle Draw\WestWhite&Patoka2	2016
					IN Stream White Miami 2013-14	S:\IGCN\OWQ\WSP\OWM\RANDOM\Corvallis	
4th	2013	28	EastForkWhite	6960.41	Documentation.pdf	4th Cycle Draw\East Fork White & Great Miami	2016
					IN Stream White Miami 2013-14	S:\IGCN\OWQ\WSP\OWM\RANDOM\Corvallis	
4th	2014	30	GreatMiamiRiver	2330.09	Documentation.pdf	4th Cycle Draw\East Fork White & Great Miami	2018
					IN Stream Wabash 2015-16	S:\IGCN\OWQ\WSP\OWM\RANDOM\Corvallis	
4th	2015	31	UpperWabashRiver	9904.92	Documentation.pdf	4th Cycle Draw\Upper & Lower Wabash	2018
					IN Stream Wabash 2015-16	S:\IGCN\OWQ\WSP\OWM\RANDOM\Corvallis	
4th	2016	32	LowerWabashRiver	7625.33	Documentation.pdf	4th Cycle Draw\Upper & Lower Wabash	2018
						S:\IGCN\OWQ\WSP\OWM\RANDOM\Corvallis	
						4th Cycle Draw\Kankakee, Great Lakes and	
4th	2017	33	KankakeeRiver	5768.42	IN Stream 2017-19 Documentation.pdf	Ohio River Tribs	2020
						S:\IGCN\OWQ\WSP\OWM\RANDOM\Corvallis	
						4th Cycle Draw\Kankakee, Great Lakes and	
4th	2018	34	GreatLakesTribs	5730.02	IN Stream 2017-19 Documentation.pdf	Ohio River Tribs	2020
						S:\IGCN\OWQ\WSP\OWM\RANDOM\Corvallis	
411	0040	05		5005.00	IN Other and OOAT 40 December 14 line and f	4th Cycle Draw\Kankakee, Great Lakes and	0000
4th	2019	35	OnioRiverTribs	5965.23	IN Stream 2017-19 Documentation.pdf		2022
						S:\IGCN\OWQ\WSP\OWM\RANDOM\Corvallis	
Eth	2020	26	Maat Farl/Mita Divar	6075 20	IN Stream 2020 22 Decumentation add	5th Cycle Draw/WFWR (2020), Patoka (2021),	2022
ວເກ	2020	30	WestForkwhiteRiver	6075.20	IN Stream 2020-22 Documentation.pdf		2022
						5:\IGCIN\UWQ\WSP\UWW\RAINDUW\Corvailis	
5th	2024	27	Dotoko Rivor	1140.20	IN Stream 2020 22 Decumentation odf	S(I) Cycle Diaw(VVFWR (2020), Paloka (2021), EEW(P (2022))	2024
501	2021	37	Falokakivei	1149.30	IN Stream 2020-22 Documentation.put		2024
						5th Cycle Draw/WEWR (2020) Patoka (2021)	
5th	2022	38	EastEork/WhiteRiver	6960 41	IN Stream 2020-22 Documentation pdf	FEWR (2022)	2024
501	2022			0000.41			2024
5th	2023	39	GreatMiamiRiver				2026
5th	2024	40	UpperWabashRiver				2026
5th	2025	41	LowerWabashRiver				2028
5th	2026	42	KankakeeRiver				2028
5th	2027	43	GreatLakesTribs				2030
5th	2028	44	OhioRiverTribs				2030

Appendix 2 – Summary of locations of Probabilistic Monitoring Program documentation files (cont.)

Appendix 3 – Installing R 3.6.1 and loading the *spsurvey* package.

R (<u>https://www.r-project.org/</u>) is a free, open-source, statistical computing and graphical software environment supported by the R Foundation for Statistical Computing. Although installation of the base R program provides a wide variety of statistical operations, the capabilities of R are greatly increased through the development of more than 15000 user-developed packages providing advanced statistical procedures, graphical user interfaces, or increased graphics production capabilities. Some packages are designed with a very narrow purpose, such as *spsurvey*, (<u>https://cran.r-project.org/web/packages/spsurvey/index.html</u>), which provides functions for selecting sites for spatial surveys and analyzing the results of probability survey designs. R is updated periodically with new features; the current version at the time of the writing of this SOP is R 3.6.1, released on 7/5/2019.

R 3.6.1 can be downloaded from a Comprehensive R Archive Network (CRAN) mirror site (https://cran.r-project.org/mirrors.html). Click on the link for the nearest CRAN mirror site (i.e. Indiana University, https://ftp.ussg.iu.edu/CRAN/), which will take you to a webpage where versions of R are available for download for Linux, Mac, and Windows operating systems. Select Download R for Windows which provides access to four subdirectories from which to choose. Select base which provides you with a link to Download R 3.6.1 for Windows. Run the file R-3.6.1-win.exe to install both the R 3.6.1 32 and 64 bit programs onto your computer and, if given the option, create desktop icons for both versions.

After R 3.6.1 has been installed, open the program. At the top of the R Console window, click on Packages, then Install Package(s). A window opens with a list of CRAN mirrors. Select the nearest mirror site, in this case, USA (MI 1) [https], and click OK. A new window opens with a list of available packages. Scroll down and click on *spsurvey*. Then click OK. The R Console window shows the status of the *spsurvey* package download. After the *spsurvey* package download has completed, at the top of the R Console window click on Packages, then Load Package.... Scroll down and click on *spsurvey*, then click OK. *spsurvey* can also be loaded by typing library(spsurvey) into the command line of the R Console and pressing Enter. Either method makes the *spsurvey* package available for use in the current session. Every time R 3.6.1 is restarted, reloading *spsurvey* is required.

Appendix 4 – R output from the calculation of aquatic life use support estimates for the 2014 Great Miami River Basin Probabilistic Monitoring project

R version 3.6.1 (2019-07-05) -- "Action of the Toes"

Copyright (C) 2019 The R Foundation for Statistical Computing

Platform: i386-w64-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.

You are welcome to redistribute it under certain conditions.

Type 'license()' or 'licence()' for distribution details.

Natural language support but running in an English locale

R is a collaborative project with many contributors.

Type 'contributors()' for more information and

'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or

'help.start()' for an HTML browser interface to help.

Type 'q()' to quit R.

> local({pkg <- select.list(sort(.packages(all.available = TRUE)),graphics=TRUE)</pre>

+ if(nchar(pkg)) library(pkg, character.only=TRUE)})

Loading required package: sf

Linking to GEOS 3.6.1, GDAL 2.2.3, PROJ 4.9.3

Loading required package: sp

Version 4.1.0 of the spsurvey package was loaded successfully.

> framesize <- 2330.09

> names(framesize) <- 'GreatMiamiRiver'

> setwd("S:/IGCN/OWQ/WSP/OWM/Integrated Report Data/East Fork White and Whitewater Basins/Monitoring Year 2014")

> DesignStatus <- read.table("designstatus.txt",header = TRUE, sep = "\t", na.strings = "NA", dec = ".", strip.white = TRUE)

> names(DesignStatus)

[1] "MySite.ID"	"Lsite"	"SiteName"	"Longdd"	"Latdd"	"My.stratum"
-----------------	---------	------------	----------	---------	--------------

[7] "MDCaty" "Weight" "StrahlerOrder" "My.Type" "My.Status" "My.ChemistryStatus"

[13] "Fish.Community" "Fish.IBI" "Macro.Community" "Macro.IBI" "Habitat" "QHEI"

[19] "DO" "pH" "Chloride" "Nitrate.and.Nitrite" "Sulfate"

[24] "Lead" "Copper" "Zinc" "Ammonia" "Cadmium" "Chromium"

[30] "Nickel" "Cyanide" "Aluminum" "Selenium" "Nutrients"

"Overall.Chemistry"

[36] "Combined.Assessment"

> tst <- !DesignStatus\$My.Status=='NN'

> DesignStatus <- data.frame(DesignStatus[tst,])

> tmp <- marinus(DesignStatus\$Latdd,DesignStatus\$Longdd)

> DesignStatus\$xmarinus <- tmp[,'x']</pre>

> DesignStatus\$ymarinus <- tmp[,'y']</pre>

> sites <- rep(TRUE,nrow(DesignStatus))</pre>

> DesignStatus\$final.wt <- adjwgt(sites,DesignStatus\$Weight,DesignStatus\$My.Type,framesize)

> sum(DesignStatus\$Weight)

[1] 1654.123

> sum(DesignStatus\$final.wt)

[1] 2330.09

> write.table(DesignStatus, file="designstatus2.csv",sep=",",row.names=FALSE)

> designstatus <- read.table('designstatus2.csv',sep=',',header=TRUE)</pre>

> sites <- data.frame(siteID=designstatus\$MySite.ID,Use=rep(TRUE,nrow(designstatus)))

> subpop <- data.frame(siteID=designstatus\$MySite.ID, GreatMiamiRiver=designstatus\$My.Type)</p>

> dsgn <- data.frame(</pre>

siteID=designstatus\$MySite.ID,stratum=designstatus\$My.stratum,wgt=designstatus\$final.wt,xcoord=designstatus\$xmarinus,ycoord=designstatus\$ymarinus)

> designstatus\$StatusTNT <- designstatus\$My.Status

> levels(designstatus\$StatusTNT) <- list(T=c('TS','SBNC','PB','LD','SCNB','SFNCM','SCMNF','SCFNM'
),NT=c('NT'))</pre>

> data <-

data.frame(siteID=designstatus\$MySite.ID,CombinedStatus=designstatus\$My.Status,StatusTNT=designs tatus\$StatusTNT)

> framelen <- c('GreatMiamiRiver'=2330.09)</pre>

> sitestatussum <- cat.analysis(sites, subpop, dsgn, data, popsize=list(GreatMiamiRiver=framelen))

- > write.table(sitestatussum, file="sitestatussum2.csv", sep=",",col.names=NA)
- > sites <- data.frame(siteID=designstatus\$MySite.ID,Use=designstatus\$My.Status=='TS')</pre>
- > data <- data.frame(siteID=designstatus\$MySite.ID,Status=designstatus\$Combined.Assessment)
- > conditionsum <- cat.analysis(sites,subpop,dsgn,data)</pre>
- > write.table(conditionsum, file="allconditionsum.csv", sep = ",",col.names=NA)
- > conditionsum90 <- cat.analysis(sites,subpop,dsgn,data,conf=90)</pre>
- > write.table(conditionsum90, file="allconditionsum90.csv", sep = ",",col.names=NA)
- > savehistory("Great Miami 2014 R Analyses.txt")
- > savehistory("Great Miami 2014 R Analyses.Rdata")