Lesson Learned

Jim Lesh, INDOT Bridge Design Team Leader

Lessons Learned

Lessons Learned

Lessons Learned

Lessons Learn

- Thermal Movents

Lessons Learned

- Thermal Movements

Fixed Support

Lessons Learned

- Thermal Movements

Lessons Learned

- Thermal Movements

409-7.01(03) Thermal Effects

Thermal translation, Δo, is estimated as follows:

7:29 \downarrow			.11
\uparrow Indianapolis, IN O			Q Q
Today	Tue 21	Wed 22	Fri 24
57°	46°	65°	38°
37°	37°	56°	29°
沙	溇	\%	
Mon \| Day			
			NW 8 MPH

A mix of clouds and sun. High 57F. Winds WNW at 5 to 10 mph .

A change temperature $\Delta o=\alpha L \Delta T$
specified in LRFD 3.12. Maximum and minimum bridge temperatures are defined depending upon whether the location is viewed as a cold or moderate climate. Indiana is considered a cold climate. See LRFD 3.12 for temperature-range values. An installation temperature of $60^{\circ} \mathrm{F}$ shall be assumed. The change in average bridge temperature, ΔT, between the installation temperature and the design extreme temperature is used to compute the positive and negative movements. A given temperature change causes thermal movement in all directions. This means that a short, wide bridge can experience greater transverse movement than longitudinal movement.

Lessons Learned

- Thermal Movements

Expansion Joints

Lessons Learned

- Thermal Movements

Dunker and Rabbat 1993, Copyright 1993 Scientific American, Inc., Institutional Licensee permission for reuse at https://about.jstor.org/terms/

Lessons Learned

- Thermal Movements

Lessons Learned

- Thermal Movements

Expansion Joints

Lessons Learned

- Thermal Movements

Lessons Learned

- Thermal Movements

Expansion Joints

Lessons Learned

- Thermal Movements

Lessons Learned

- Thermal Movements

Lessons Learned

- Thermal Movements

\{ $\begin{aligned} & \text { See List of Unique }\end{aligned}$
Provisions (samples),
No. 15, Terminal Joint Polymer Modified Asphalt Link

N NextLevel

Lessons Learne

- Thermal Movements

Lessons Learned

- Thermal Movements

402-7.02(03) Integral End Bent [Rev. Sep. 2019]

The integral end bent eliminates the deck joint between the superstructure and the end bent by the structural integration of the two. The vertical dimension of the cap beam can be minimized as the mudwall becomes a composite part thereof.

Components of the deep foundation shall be flexible to accommodate the longitudinal movement of the pile bent. Such flexibility can be provided with steel H-piles or steel-encased-concrete viles.

The reinforced concrete bridge approach (RCBA) should be attact longitudinal bridge movements should be accommodated at the outer e terminal joint. See Section 409-2.04(01) for terminal joint criteria.

The Bridge has an...	Approach Pavement is...	Terminal Joint Requirement
integral or semi integral end bent AND an expansion length ≤ 100 ft for concrete and $\leq 50 \mathrm{ft}$ for steel.	HMA	Not Required
	PCCP	Terminal Joint, Type PCCP
integral or semi integral end bent AND has an expansion length $>100 \mathrm{ft} \leq 400$. (concrete) or expansion length $>50 \mathrm{ft} \leq 400 .($ steel)	HMA	Terminal Joint, Type HMA
integral or semi integral end bent AND has an expansion length >400 ft.	PCCP	Terminal Joint, Type PCCP
integral or semi integral end bent AND any expansion length	CRCP or HMA over CRCP	Special Detail Required

Lessons Learned

- Thermal Movements

Lessons Learned

-Thermal Movements

Lessons Learned

- Thermal Movements
- The Devil is in the Details
- Show on Plans

	JoInt OpenIng Table					
Temperature	0°	20°	40°	60°	80°	100°
Dimension "W"	$10.42^{\prime \prime}$	$9.67^{\prime \prime}$	$8.92^{\prime \prime}$	$8.17^{\prime \prime}$	$7.42^{\prime \prime}$	$6.67^{\prime \prime}$

- Consider Terminal Joints

Lessons Learned

- Extended-Pile Bents

Lessons Learned

- Extended-Pile Bents
C. Substructures and Foundations

1. General: The substructure is in satisfactory condition and was rated a " 6 " during the 2017 NBIS inspection. The substructures consist of concrete caps on exposed $14^{\prime \prime}$ S.E.C. piling at the piers and concrete cap on $14^{\prime \prime}$ S.E.C. piling at the end bents.
2. Repair/Maintenance Work: Previous minor surface patching on the center of the end bents was noted during the field inspection.
3. Specific Deficiencies: Epoxy coating is cracking and peeling on piles with only 50% of the epoxy coating remaining. The piles have minor section loss but appear to be sound.

Substructure and Foundation \downarrow

1. The existing exposed $14^{\prime \prime}$ S.E.C. piling at the piers will be cleaned and epoxy coated to 2 feet below existing ground to further extend the service life of the piles.

Lessons Learned

- Extonded Diln Dnntr

Lessons Learned

- Extended-Pile Bents

解 NextLINAvel

Lessons Learned

Lessons Learned

Ninextevel

