

Table of Contents

Example Type A Certification	i
Anchor Bolts	1
Asphalt Materials, Non-Paving Grades	2
Asphalt Materials, PG64-22 & PG58-28	9
Asphalt Material for Pipe Coating	10
Asphalt Material for Waterproofing Concrete	12
Bronze Castings	13
Cellular Concrete Grout	15
Cold Patching Mix	16
Expansion Joint Sealing System	17
High Strength Bolts	19
High Strength Nuts	20
High Strength Washers	21
Hot Pour Joint Adhesive	22
Pipe Liners	23
Precast Median Barriers	26
Precast/Prestressed Concrete Members (Seven Wire Strand)	27
Preformed Elastomeric Joint Seal	29
SBR Polymer Latex	30
Structural Backfill for Retaining Wall Systems	31
Torsion Control Bolts	33
Wire Rope for Cable Barrier Systems	34

Type A certification shall be prepared by the manufacturer. It shall consist of a certified copy of a laboratory report which lists results of the specified tests and shall certify that the materials furnished comply with the specifications. The applicable specification shall be referred to in the certification. The tests may be conducted in the laboratory of the manufacturer or in another qualified laboratory. Such tests shall have been conducted on samples obtained from the lot or lots of material in the shipment.

916.03(a) Sample Type A Certification Form

acceptable limits of said Test Methods:

INDIANA DEPARTMENT OF TRANSPORTATION TYPE A CERTIFICATION OF COMPLIANCE

CONTRACTOR NUMBER
ROJECT NUMBER
CONTRACTOR'S NAME
IANUFACTURER'S NAME
/L or INVOICE NUMBER
ATERIAL DESTINATION

This is to certify that for the contract described above, the materials supplied are as follows:

**Material Name			Quantity		
***Conform to:					
The materials listed above comply wit	h the followi	ng Test Method	s and are	within	the

TEST METHOD	LIMITS OF TEST VALUE	ACTUAL TEST RESULTS
Date	Company	of Manufacture

*Signature of Company Official/Title

- * This Certification shall be prepared by the manufacturer of the material being supplied for this contract.
- ** Identifying information such as Alloy, Grade, Type, Class, or other similar designation shall also be shown when appropriate.
- *** Applicable material specification reference shall be listed.

Note that material specific example forms may be found in ITM 804.

Anchor Bolts

Certification: Type A

Frequency Manual Reference No.: 34, 01 of 02

Specification: 910.20 (h)

Requirements:

Anchor bolts used for bridge railings shall be stainless steel in accordance with ASTM A276, Type 305 or 430 and have a minimum ultimate strength of 100 ksi (690 MPa). Threads may be cut or rolled.

Туре	Carbon	Manganese	Phosphorus	Sulfur	Silicon	Chromium	Nickel
Austenitic Grade 305	0.12	2.00	0.045	0.030	1.00	17.0-19.0	11.0-13.0
Ferritic Grade 430	0.12	1.00	0.040	0.030	1.00	16.0-18.0	NA

Chemical Requirements:

Mechanical Requirements:

Туре	Condition	Finish	Diameter or Thickness inches (mm)	Yield Strength min ksi (MPa)	Elongation in 2 in. (50 mm) ^B or 4D min %	Reduction of Area ^{C,D} min %
Austenitic Grade 305	А	Cold	Up to 1/2 in. (12.70 mm) including over 1/2 in. (12.70 mm)	90 (620)	30	40
Ferritic Grade 430	А	Hot or Cold	all	60 (415)	20	4

^B For some specific products, it may not be practicable to use a 2-in (50mm) gage length. The use of sub-size test specimens, when necessary, is permissible in accordance with the Test Methods and Definitions A370.

^C Reduction of area does not apply on flat bars 3/16in. (4.76mm) and under in thickness as this determination in not generally made in the product size.

^D The material shall be capable of meeting the required reduction of area where listed, but actual measurement and reporting of the reduction of area are not required unless specified in the purchase order.

Asphalt Materials, Non-Paving Grades

Certification: Type A

Frequency Manual Reference No.: 1, 03 of 03

Specification: 902.01(b) through (e)

Requirements:

(b) Asphalt Emulsions

Asphalt emulsions shall be composed of an intimate homogeneous suspension of a base asphalt, an emulsifying agent, and water. Asphalt emulsions may contain additives to improve handling and performance characteristics. Failure of an emulsion to perform satisfactorily in the field shall be cause for rejection, even though it passes laboratory tests. The grade used shall be in accordance with the table for asphalt emulsions as shown herein.

AE-90 is a medium breaking, low-penetration, high-asphalt content type, intended for hot and cold plant mixing, road mixing, and seal coats or as otherwise specified.

AE-90S is a rapid setting, anionic type emulsion for seal coat applications.

AE-150 is a medium breaking, moderately soft penetration type, intended for use in surface treating, tack coats, and coating open and dense graded aggregate, or as otherwise specified.

AE-150-L is a medium-breaking, relatively low-viscosity type. It may be specified in lieu of AE-T or AE-150 when a softer asphalt or greater aggregate penetration is desired. AE-150-L is suitable for sand seals.

AE-PL is a medium-slow-breaking, low-viscosity, low-asphalt content type, intended for use as a prime or as dust palative.

AE-T is a medium-breaking, comparatively low penetration type, intended for tack coats, seed mulching, or as otherwise specified.

HFRS-2 is a quick-breaking, high-viscosity, high-float, relatively high asphalt content type, intended for seal coats.

RS-2 is a quick-breaking, high-viscosity, relatively high-asphalt content type, intended for seal coats.

AE-PMP is a polymerized modified asphalt emulsion intended for use as a prime coat material.

AE-PMT is a polymerized modified asphalt emulsion intended for use as a tack coat material.

SS-1h is a slow setting, hard penetration type, intended for tack coats.

AE-F is a medium setting, hard penetration, diluted emulsion intended for fog sealing.

AE-NT is a fast setting, hard penetration type, intended for tack coats and base seal.

The requirements for asphalt emulsions shall be in accordance with the following:

Characteristic (1) (2)	AASHTO Test Method	RS- 2	HFRS- 2	AE- 90	AE- 90S	AE- T	AE- NT	AE- F	SS- 1h	AE- 150	AE- 150L	AE- PL	AE- PMT(6)	AE- PMP(6)
Test on Emulsion														
Viscosity, Saybolt Furol at 25°C, min.	T 59			50			15		20	50				20+
Viscosity, Saybolt Furol at 25°C, max.	T 59					100	100	100	100		100	115	100	
Viscosity, Saybolt Furol at 50°C, min.	T 59	75	75		50					75				
Viscosity, Saybolt Furol at 50°C, max.	T 59	400	400							300				
Demulsibility w/35mL, 0.02N CaC12%, %min.	T 59	50	50		30			25						
Demulsibility w/50mL, 0.10N CaC12%, %min.	T 59			75		75							25+	25+
Oil Distillate by Distillation, mL/100g Emul ⁽³⁾	T 59	4.0	4.0	4.0	3.0	4.0	4.0	4.0	4.0	7.0	7.0	3.0	3.0	3.0
Residue by Distillation, % min.	T 59	68	68	68	65 ⁽⁵⁾	54	50	27	57	68	60	30		
Residue by Distillation, % max.	T 59					62		35			65			
Sieve Test, % max.	T 59	0.10	0.10	0.10	0.10	0.10	0.30	0.10	0.10	0.10	0.10	0.10	0.10	0.10
Penetrating, Ability, mm, min.	902.02(w)											6		
Stone Coating Test, %	902.02(t)3a			90						90	90			
Settlement, % max.	T59	5	5	5			5							
Storage Stability, % max	T59				1									
Asphalt Content by Distillation at 204°C, %min.													54	45
Asphalt Content by Distillation at 204°C, %max													62	
Tests on Residue														
Penetration (0.1 mm) at 25° C, 100g, 5 s, min ⁽⁴⁾	T 49	100	100	100	90	50		40	40				50	300+
Penetration (0.1 mm) at 25° C, 100g, 5 s, max ⁽⁴⁾	T 49	200	200	200	150	200	40	90	90				200	
Penetration (0.1 mm) at 25° C, 50g, 5 s, min ⁽⁴⁾	T 49									100	100			
Penetration (0.1 mm) at 25°C, 50g, 5 s, max ⁽⁴⁾	T 49									300	300			
Ductility at 25°C, mm, min.	T 51	400	400	400		400			400					
Solubility in Org. Sol., % min.	T 44	97.5	97.5	97.5	97.5	97.5	97.5	97.5	97.5	97.5	97.5	97.5	97.5	97.5
Float Test at 60°C, s, min ⁽⁴⁾	T 50		1200	1200	1200	1200				1200	1200			
Force Ratio	T 300				0.3									
Elastic Recovery, at 4°C	T 301				58									
Polymer Content by Infrared													1.5+	1.5+

Notes: (1) Broken samples or samples more than 10 days old will not be tested. (2) Combined percentage of the residue and oil distillate by distillation shall be at least 70% (note the different units – ml for oil and % for residue). (3) Oil distillate shall be in accordance with ASTM D 396, table 1, grade no. 1

(4) The Engineer may waive the test. (5) Maximum temperature to be held for 15 min $200 \pm 5^{\circ}$ C.

(6) Asphalt shall be polymerized prior to emulsification.

INDIANA DEPARTMENT OF TRANSPORTATION

TYPE A CERTIFICATION FOR ASPHALT EMULSION

Name	Source Number
Sample Date:	
	NameSample Date:

TestMethod	Asphalt Emulsion							
	Property	*Limits	Results					
AASHTO T 59	Viscosity, Saybolt Furol							
AASHTO T 59	Demulsibility							
AASHTO T 59	Oil Distillate by Distillation							
AASHTO T 59	Residue by Distillation							
AASHTO T 59	Sieve Test							
AASHTO T 49	Penetration @ 25°C							
AASHTO T 50	Float Test @ 60°C							
AASHTO T	Elastic Recovery @ 4°C (if							
301	applicable)							

*Standard Specification section 902.01(b)

The represented quantity (gallons) noted for this asphalt emulsion conform to Standard Specification section 902.01(b).

Signature:

Representative

Date: _____

(c) Cutback Asphalts

Cutback asphalts shall be composed of an intimate homogeneous mixture of an asphalt base and a suitable distillate designed for medium, or slow curing. Cutback asphalts may also contain an additive as an aid in uniformly coating wet, damp, or dry aggregates used in patching mixtures or HMA pavements. These asphalts shall not contain more than 0.3% water as determined by AASHTO T 55, shall not separate when allowed to stand, and shall not foam when heated to permissible temperatures. When an additive is used, it shall be incorporated homogeneously in the asphalt at the point of manufacture. The temperature of the cutback asphalt shall not be higher than shown for that grade in 902.03.

1. Medium Curing Asphalts With and Without Additives

Medium curing asphalts with and without additives shall be in accordance with the following:

	Grades							
Characteristics	MC-70	MC-250	MC-800	MC-3000				
	MCA-70	MCA-250	MCA-800	MCA-3000				
Flash Point (Open Tag), °C ⁽⁴⁾	38+	66+	66+	66+				
Kinematic Viscosity at 60° C, (cSt) ⁽²⁾	70-140	250-500	800-1600	3000-6000				
Saybolt-Furol Viscosity at 50°C (s)	60-120							
Saybolt-Furol Viscosity at 60°C (s)		125-250						
Saybolt-Furol Viscosity at 83°C (s)			100-200	300-600				
Distillation ⁽¹⁾								
Distillate (% of total distillate to								
360°C MC-70 @ 225 °C):								
to 225°C	0-20	0-10						
to 260°C	20-60	15-55	35+	15+				
to 316°C	65-90	60-87	45-80	15-75				
Residue from distillation to								
360°C (volume % by difference)	55+	67+	75+	80+				
Tests on Residue from Distillation ⁽¹⁾								
Penetration, 25°C, 100g, 5 s, -								
(0.1 mm)								
(without additive)	120-250	120-250	120-250	120-250				
(with additive)	120-300	120-300	120-300	120-300				
Ductility at 25° C $(10$ mm) ⁽³⁾	100+	100+	100+	100+				
Solubility in organic solvents, %	99.5+	99.5+	99.5+	99.5+				

(1) Test may be waived when approved

(2) Viscosity may be determined by either the Saybolt-Furol or Kinematic test. In case of dispute, the Kinematic viscosity test shall prevail.

(3) If the ductility at 25°C is less than 100, the material will be acceptable if its ductility at 16°C is 100+

(4) Flash point by Cleveland Open Cup may be used for products having a flash point greater than 80°C

2. Slow Curing Asphalts With and Without Additives

Slow curing asphalts with and without additives shall be in accordance with the following:

	Grades							
Characteristics	SC-70	SC-250	SC-800	SC-3000				
	SCA-70	SCA-250	SCA-800	SCA-3000				
Flash Point (Cleveland Open Cup), °C	66+	79+	93+	107+				
Kinematic Viscosity at 60° C, (cSt) ⁽²⁾	70-140	250-500	800-1600	3000-6000				
Saybolt-Furol Viscosity at 50°C (s)	60-120							
Saybolt-Furol Viscosity at 60°C (s)		125-250						
Saybolt-Furol Viscosity at 83°C (s)			100-200	300-600				
Distillation								
Total Distillate to 360 °C (% by Volume)	10-30	4-20	2-12	5				
Float Test of Distillation Residue at 50°C (s)	20-100	25-110	50-140	75-200				
Ductility of Asphalt Residue at 25°C (10mm) ⁽¹⁾	100+	100+	100+	100+				
Solubility in Organic Solvents, % ⁽¹⁾	99.5+	99.5+	99.5+	99.5+				
(5) Test may be waived when approved								
(6) Viscosity may be determined by either th	ne Saybolt-F	Furol or Kin	ematic test.	In case of				

dispute, the Kinematic viscosity test shall prevail.

(d) Utility Asphalt

The asphalts shall be uniform in character and shall not foam when heated to 350°F (177°C). Utility asphalts shall be in accordance with the following:

Physical Properties	UA-I	UA-II	UA-III
Softening Point (Ring & Ball), °C	46-63	63-85	79.5-96
Penetration of Original Samples (0.1 mm)			
at 4°C, 200 g, 60 s	10	10	10
at 25°C, 100 g, 5 s	50-100	25-45	15-35
at 46°C, 50 g, 5 s	100 Min.	130 Max.	90 Max.
Ductility at 25°C, 50 mm/min., 10 mm, Min.	30	10	2.5
Solubility in Organic Solvents, % Min.	99.0	99.0	99.0
Flash Point (Cleveland Open Cup), °C, Min.	225	225	225
Penetration of Residue from Thin Film Oven	30	15	10
Test, 25°C, 100 g, 5 s, (0.1 mm) Min. ⁽¹⁾	50	15	10
(7) Test will be performed when complete pl	nysical characteris	stics are needed or	r desired

(e) Asphalt for Coating Corrugated Metal Pipe Asphalt for coating corrugated metal pipe shall be in accordance with the following:

Physical Properties	Minimum	Maximum			
Softening Point (Ring & Ball), °C	93	110			
Penetration of Original Samples (0.1 mm)					
at 4°C, 200 g, 60 s	20				
at 25°C, 100 g, 5 s	35 ⁽¹⁾				
Solubility in Organic Solvents, %	99.0				
Flash Point (Cleveland Open Cup), °C	232				
Flow Test, mm		6.4			
Shock Test	3 of 4 specimens shall pass				
(8) May be 30 minimum provided all 4 shock test specimens pass					

Asphalt Materials, PG 64-22 & PG 58-28

Certification: Type A

Frequency Manual Reference No.: 1, 01 of 03

Specifications: 902.01a

Requirements: The testing requirements are as follows:

GRADE		PG				
GRADE	58-28	64-22				
ORIGINAL BINDER						
Flash Point, minimum °C	23	30				
Viscosity, maximum 3 Pa·s, Test Temp, °C	13	35				
DSR, G*/sin δ (delta), minimum, 1.00 kPa, Test Temp. @ 10 rad/s,°C	58	64				
ROLLING THIN FILM OVEN RESIDUE						
Mass Loss, maximum	1.	00				
DSR, G*/sin δ (delta), minimum, 2.20 kPa, Test Temp. @ 10 rad/s, °C	58	64				
PRESSURE AGING VESSEL (PAV) RESIDUE						
PAV Aging Temperature °C	100 (N	Note 1)				
DSR, G*/sin δ (delta), minimum, 5,000 kPa, Test Temp. @ 10 rad/s, °C	19	25				
Physical Hardening	Report ((Note 2)				
Creep Stiffness, S, maximum, 300 MPa, m-value, minimum, 0.300 Test Temp. @ 60 s, °C	-18	-12				
Notes: 1. Oven temperature tolerance shall be ± 0.5 °C						
2. Physical Hardening is performed on a set of asphalt beams according to AASHTO T						
313, Section 12.1, except the conditioning time is extended to 24 h \pm 10 min at 10°C						
above the minimum performance temperature. The 24 h stiffness and m-value are						
reported for information purposes only.						

Asphalt Material for Pipe Coating

Certification: Type A

Frequency Manual Reference No.: 72, 01 of 01

Specification: 908.07

Requirements:

The material, fabrication, manufacturer certified mill report, and fabricator certification shall be in accordance with the applicable requirements of 908.02. Coupling bands shall be fully bituminous coated.

After fabrication, the pipe or pipe-arch shall be fully bituminous coated.

Connecting or coupling bands shall be of the 2-piece type when used with coated pipe of 36 in. (900 mm) diameter or larger.

The asphalt material for coating shall be in accordance with 902.01(e).

Physical Properties	Minimum	Maximum
Softening Point (Ring and Ball), °C	93	110
Penetration of Original Samples (0.1 mm)		
at 4°C, 200g, 60s	20	
at 25°C, 100g, 5s	35 (1)	
Solubility in Organic Solvents, %	99.0	
Flash Point (Cleveland Open Cup), °C	232	
Flow Test, mm		6.4
Shock Test	3 or 4 specimens shall pass	

(1) May be 30 minimum provided all 4 shock test specimens pass

Samples of the asphalt material shall be obtained from the working tank prior to or during coating of the pipe, or from strippings off the pipe after coating. When applied to the pipe, the asphalt material shall be free from impurities. The metal shall be free from grease, dust, or moisture. Either process set out below may be used for application.

(a) When the pipe is not preheated, the temperature of the asphalt at the time of immersion shall be $400^{\circ}F \pm 5^{\circ}F$ ($204^{\circ}C \pm 3^{\circ}C$). The duration of the immersion in the asphalt shall be in accordance with the following:

Thickness	0.052 in.	0.064 in.	0.079 in.	0.109 in.	0.138 in.	0.168 in.
Minimum						
Immersion	2.0	2.5	3.0	5.0	6.5	8.0
Time for First	2.0	2.3	5.0	5.0	0.5	0.0
Dip (min)						

(b) When the pipe is preheated, the pipe shall be brought to a temperature of $300^{\circ}F$ (149°C) and the asphalt shall be heated to a temperature of $380^{\circ}F \pm 5^{\circ}F$ (193°C $\pm 3^{\circ}C$) before the pipe is dipped.

In either process, the pipe shall be dipped a second time or more, if necessary, to give a minimum thickness of 0.05 in. (1.3 mm).

If a paved invert is specified, the pipe or pipe-arch shall first be fully coated as required. Additional bituminous material shall be applied in the bottom section to form a smooth pavement. Except where the upper edges intersect the corrugations, the pavement shall have a minimum thickness of 1/8 in. (3 mm) above the crests of the corrugations. The pavement shall be applied to the lower quarter of the circumference.

The manufacturer of the asphalt material shall furnish to the pipe fabricator the type of certification specified in the Frequency Manual and in accordance with 916 for each shipment or lot of asphalt material. The pipe fabricator shall keep these certifications on file and available to review for 5 years. In addition, samples from the working tank will be obtained for verification of requirements.

Asphalt Material for Waterproofing Concrete

Certification: Type A

Frequency Manual Reference No.: 14, 02 of 02

Specification: 702.23, 902.01(d)

Requirements: Utility Asphalt (UA I)

Characteristic	UA-I
Softening Point (Ring and Ball), °C	46-63
Penetration of Original Samples ⁽¹⁾ (0.1 mm)	
at 4°C, 200g, 60s, Min.	10
at 25°C, 100g, 5s	50-100
at 46 °C, 50 g, 5 s	100 Min.
Ductility @ 25°C, 50 mm/min., 10 mm, min. ⁽¹⁾	30
Solubility in Organic Solvents, % min ⁽¹⁾	99.0
Flash Point (Cleveland Open Cup), °C, min.	225
Penetration of Residue from Thin Film Oven Test, 25°C, 100 g, 5 s, (0.1 mm) Min. ⁽¹⁾	30

(1) Test will be performed when complete physical characteristics are needed or desired

Bronze Castings

Certification: Type A

Frequency Manual Reference No.: 105, 01 of 01

Specification: 910.06(a)

Requirements:

Bronze castings shall be in accordance with ASTM B 22, alloys 911 or 913.

Material Requirements: The material shall be a casting of Copper Alloy UNS No. C91100 or C91300.

Chemical requirements:

Conner	Composition, % max, except as indicated										
alloy	Major Elements			Residual Elements							
UNS No.	Copper	Tin	Lead	Zinc	Nickel Including Cobalt	Iron	Antimony	Sulfur	Phosphorus	Aluminum	Silicon
C91100	82-85*	15-17	0.25	0.25	5.0	0.25	0.20	0.05	1.0**	0.005	0.005
C91300	79-82*	18-20	0.25	0.25	5.0	0.25	0.20	0.05	1.0**	0.005	0.005

*In determining copper minimum, copper may be calculated as copper plus nickel

**For continuous castings, phosphorus shall be 1.5 % max

Mechanical Requirements:

		A Mechanical Requirements (As Sand Cast)							
Temper	Copper alloy UNS No.	Tensile Strength, min		Yield Strength, at 0.5% Extension Under Load, min		Elongation in 2 in.	Brinell Hardness,	Compression Deformation limit, min	
		ksi	(MPa)	ksi	(MPa)	(50 mm), %	min	ksi	(MPa)
M01	C91100	35*	(240)*	25*	(170)*	2*	135*	18	(125)
M01	C91300	35*	(240)*	30*	(205)*	0*	170*	24	(165)

*TYP value

	Connor allow	B Mechanical Requireme	ents (As Centrifugal Cast)		
Temper	UNS No.	Compression Deformation Limit, min			
		ksi	(MPa)		
M01	C91100	18	(125)		
M01	C91300	24	(165)		

		C Mechanical Requirements (As Continuous Cast)				
Temper	Copper alloy UNS No.	Brinoll Hordnoss, min	Compression I	Deformation limit, min		
		Dimen maruness, mm	ksi	(MPa)		
M01	C91100		18	(125)		
M 01	C91300	160	24	(165)		

Cellular Concrete Grout

Certification: Type A

Frequency Manual Reference No.: 112, 01 of 01

Specification: 725.07

Requirements:

The cellular concrete grout shall be designed in accordance with ASTM C 796 except as herein modified. The admixtures, retarders, and plasticizers used in the grout shall be in accordance with the foam concentrate supplier's specifications. The mix shall have a minimum 28-day compressive strength of 150 psi (1040 kPa). The mix shall be tested by a laboratory approved by the Department or shall be approved based on prior acceptable performance on Department contracts. The Contractor shall provide a Type A certification in accordance with 916 that provides the compressive strength results.

Cold Patching Mix

Certification: Type A

Frequency Manual Reference No.: 2, 07 of 07

Specification: 403.05

Requirements: Preparation of Mixtures

The size of the aggregate and the grade of asphalt materials shall be as specified. The gradations and percent of asphalt shall be as follows:

COMPOSITION LIMITS FOR CMA MIXTURES								
	Total % of Aggregates Passing Sieves Based							
Sieve Size	on Total Weight of Aggregates							
	Size 2	Size 5	Size 8	Size 9	Size 11	Size 5D		
2.5 in. (63 mm)	100							
2 in. (50 mm)	95-100							
1.5 in. (37.5 mm)		100				100		
1 in. (25 mm)	0-25	85-100	100			80-99		
3/4 in. (19.0 mm)	0-10	60-90	75-100	100		68-90		
1/2 in. (12.5 mm)	0-7	30-65	40-75	65-90	100	54-76		
3/8 in. (9.5 mm)		15-50	20-55	30-65	75-100	45-67		
No. 4 (4.75 mm)		0-20	0-20	0-20	10-35	30-50		
No. 8 (2.36 mm)		0-15	0-15	0-15	0-15	20-45		
No. 30 (600 µm)						7-28		
No. 200 (75 µm)	0-5	0-5	0-5	0-6	0-6	0-6		
Minimum % Crushed	95	95	95	95	95	95		
% of Asphalt*	2.0-3.5	2.5-4.0	3.0-4.5	3.5-5.0	4.0-6.0	3.5-5.0		
* Percent of asphalt shall be calculated on the basis of the total weight (mass) of the								
mixture, exclusive of water or solvent. When slag is used, the asphalt content will be								
adjusted to compensate for the specific gravity and surface area.								

The moisture condition of the aggregate shall be such that the aggregate is uniformly coated and satisfactorily retains the required amount of asphalt during the stockpiling, hauling, and spreading operations. Mixtures shall not be produced at temperatures exceeding 180°F.

Expansion Joint Sealing System

Certification: Type A

Frequency Manual Reference No.: 7, 03 of 03

Specification: RSP 724-B-145

Silicone Sealant Requirements:

Test	Limits	Test Method
Extrusion Rate	200-550 G/minute	MILS S 8802
Specific Gravity	1.23-1.35	ASTM D 1475
Nonvolative	93% minimum	

As installed at 77°F (25°C) and 50% relative humidity, after 48 h cure:

Test	Limits	Test Method
Skin-over time	20 minutes, max	
Joint Elongation	600% minimum	ASTM D 3583 ^{1,2}
Joint Modulus	3-12 psi (20.7-82.7 kPa)	ASTM D 35831,2

¹ Section 114, modified with pull rate of 2 in./minimum (50 mm/minimum)

² Joint size 1/2 in. by 1/2 in. by 2 in. (13 mm by 13 mm by 50 mm)

Binder Requirements:

Test	Limits	Test Method
Mixing Ratio	1:1 by volume of weight	ASTM D 2393
Viscosity	9-20 poises, Brookfield Model LVT Spindle #2, 30	
	rpm, 75°F, ± 2°F (24°C, ± 1°C)	
Color	Black	
Gel Time	25-50 minutes	AASHTO M-200

As cured:

Test	Limits	Test Method	
Elongation	40-55%	ASTM D 6381	
Tensile Strength	900 psi min. (6,205 kPa min.)	ASTM D 6381	
Shore Hardness at 25°C (77°F)	45	ASTM D 2240	

¹ Test method Type 1, molded specimens, 0.25 in. (6.4 mm) thick

Polymer Nosing System Mortar Requirements:

Test	Limits	Test Method
Compressive Strength	2,200 psi min. (15,170 kPa min.)	ASTM C 579 ¹
Bond Shear Strength	900 psi min. (4,825 kPa min)	ASTM C 882
Abrasion Resistance, Water Index Table H 22	1.0 maximum	ASTM C 502
Compressive Stress	350 psi min. (2,415 kPa min.)	
Resilience	70% minimum	

¹ at 24 hours, Method B

High Strength Bolts

Certification: Type A

Frequency Manual Reference No.: 100, 02 of 03

Specification: 910.02(g)

Requirements:

The manufacturer or supplier shall provide a certification of compliance with all requirements for high strength bolts used in the assembly of structural steel applications. The certification shall include the lot and heat numbers of the fasteners on the shipping package and indicate when and where all testing was performed.

Requirement	Test Method	Specification Limits
Chemical Composition ASTM A 325	ASTM A 325 Type 1 Bolts – Table 1 Type 3 Bolts – Table 2	Refer to District Lab
Hardness ASTM A 325	ASTM A 325 Type 1 & Type 3 Bolts – Table 3	Refer to District Lab
Tensile Properties ASTM A 325	ASTM A 606-11a & ASTM A 325- Table 4	Refer to District Lab
Proof Load ASTM A 325	ASTM A 606-11a & ASTM A 325 - Table 5	Refer to District Lab
Zinc Coating (Hot Dip Process)	ASTM F 2329 (Hot Dip)	Hot Dip= 1.0 oz./ft ² (minimum coating thickness of any individual specimen)
Zinc Coating (Mechanically Deposited)	ASTM B 695 Class 55	Minimum Thickness = 53 μ m
Rotational Capacity Testing (Type 3 Bolt)	ASTM A 325 (Section 6.3 & 10.2)	Refer to District Lab

High Strength Nuts

Certification: Type A

Frequency Manual Reference No.: 100, 02 of 03

Specification: 910.02g

Requirements:

The manufacturer or supplier shall provide a certification of compliance with all requirements for high strength nuts used in the assembly of structural steel applications. The certification shall include the lot and heat numbers of the fasteners on the shipping package and indicate when and where all testing was performed.

Requirement	Test Method	Specification Limits
Chemical Composition A 563, DH & DH3 A 194, 2H	DH - ASTM A 563-a Table 1 DH3 - ASTM A 563-a Table 2 2H - ASTM A 194-a Table 1	Refer to District Testing
Hardness	ASTM A 563-a Table 3	DH & DH3 = 24- 38 HRC
	ASTM A 194-a Table 2	2H = 24-35 HRC
Proof Load	DH & DH3 - ASTM A 563-a	DH & DH3= 175 ksi min. (non-coated)
		DH & DH3= 150 ksi min. (coated)
Proof Load	2H - ASTM A 194-a Table 3	Refer to District Testing
Zinc Coating	ASTM F 2329 (Hot Dip)	Hot Dip= 1.0 oz./ft^2
ASTM A563-07a	ASTM B 695 (Mech. Dep.)	(avg. of all specimens)
DH & DH3	Class 55	Mechanical Deposition = $53 \mu m min$.
Zinc Coating ASTM A194-08a 2H	ASTM A 194-a	Not Allowed
Rotational Capacity Testing (Type 3 Bolt)	ASTM A 325 (Section 6.3 & 10.2)	Refer to District Testing

High Strength Washers

Certification: Type A

Frequency Manual Reference No.: 100, 02 of 03

Specification: 910.02g

Requirements:

The manufacturer or supplier shall provide a certification of compliance with all requirements for high strength washers used in the assembly of structural steel applications. The certification shall include the lot and heat numbers of the fasteners on the shipping package and indicate when and where all testing was performed.

Requirement	Test Method	Specification Limits
Chemical Composition (Type I or Type 3)	ASTM F 436, Table I	Refer to District Testing
Zinc Coating (Hot Dip Process)	ASTM A 153, Class C or ASTM F 2329	Minimum Coating Thickness, (mils) Specimen Average= 2.1 Any Single Specimen = 1.7
Zinc Coating (Mechanical Deposition)	ASTM B 695, Class 55 (AASHTO M 298, Class 55)	Minimum Coating Thickness, (µm) Any Single Specimen = 53
Hardness	ASTM F 436	All Washers (except HDG) = 38 – 45HRC Hot Dipped Galv. Washers = 26 - 45 HRC
Rotational Capacity (Type 3 Bolt)	ASTM A 325 (Section 6.3 & 10.2)	Refer to District Testing

Hot Poured Joint Adhesive

Certification: Type A

Frequency Manual Reference No.: 17, 2 of 8

Specifications: RSP 401-R-581

Requirements:

Hot poured joint adhesive is an asphalt material that is used to seal the longitudinal construction joint formed between the adjacent HMA pavement courses. The joint adhesive shall be in accordance with the following:

Test	Method	Test Results
Softening Point, °F (°C)	AASHTO T 53	> 170 (77)
Ductility @ 77°F (25°C), mm	AASHTO T 51	> 300
Ductility @ 39°F (4°C), mm	AASHTO T 51	> 300
Apparent Viscosity @ 400°F (204°C), cp	ASTM D 2669	4,000 - 11,000
Asphalt Compatibility	ASTM D 5329	Pass
Cone Penetration @ 77°F (25°C), mm	ASTM D 5329	50.0 - 100.0
Flow @ 140°F (60°C), mm	ASTM D 5329	< 5
Resilience @ 77°F (25°C), %	ASTM D 5329	> 30
Tensile Adhesion @ 77°F (25°C), mm	ASTM D 5329	> 500
Flexibility @ 0°F (-18°C)	ASTM D 3111	Pass
Flash Point, °F (°C)	AASHTO T 48	> 410 (210)

Pipe Liners

Certification: Type A

Frequency Manual Reference No.: 63, 05 of 07

Specification: 907.25

Requirements:

Thermoplastic liner pipe may be solid wall HDPE in accordance with ASTM F714, profile wall HDPE in accordance with ASTM F894 or profile wall PVC in accordance with ASTM F949. Permissible joints are those listed in 725.02. In the photo above, solid wall HDPE with a grooved press-on joint appears to the left while profile wall HDPE is to the right. Typically, profile wall HDPE as shown here is joined with an extrusion weld. A joint type not listed in 725.02 may be used if approved by the Engineer. Acceptance of pipe liners is by approval list or by Type A Certification as stated in 725.02. For acceptance of liner pipe by Type A Certification, the following information are required to be included:

Solid Wall HDPE Liner

Property	Test Method	Specification Limits
Resin Density	ASTM D3350	0.940 min.
Resin Melt Index	ASTM D3350	0.15 max.
	Condition (190, 2.16)	
Liner OD	AASHTO M326	Size and tolerance vary, contact District Testing
Liner Wall	AASHTO M326	Nominal OD, in inches, divided by 32.5,
Thickness or ID		minimum
		(For 12 in., use 12.750 in. and for 13 in., use
		13.375 in.)
		Given ID, subtract from OD provided and divide
		by 2 to determine wall thickness, then use spec
		above
Liner DR (Actual	AASHTO M326	30.0, minimum
Calculated)		(Calculated by OD divided by wall thickness)
Length	AASHTO M326	99% specified length, min. or ¹ /2" less than
		specified length, min., whichever is shorter

Profile Wall HDPE Liner

Property	Test Method	Specification Limits
Resin Density	ASTM D3350	0.940 min.
Resin Melt Index	ASTM D3350	0.4 max.
	Condition (190, 2.16)	
RSC	ASTM F894 @ 3%	160 min. for circular installations, 250 min. for
(or Pipe Stiffness,	Deflection	deformed installations
PS, at 5%		(If PS at 5% deflection is provided in lieu of RSC,
Deflection)		contact District Testing)
ID	ASTM F894	Varies on size and profile, contact District Testing
Wall Thickness	ASTM F894	Varies on size and profile, contact District Testing
(Pipe)		
Wall Thickness	ASTM F894	Varies on size and profile, contact District Testing
(Bell)		
Wall Thickness	ASTM F894	Varies on size and profile, contact District Testing
(Spigot)		
Flattening	ASTM F894	Pass (no splitting, cracking or breaking)
Length	ASTM F894	±2 in. of specified or nominal length

Profile Wall PVC Liner

Property	Test Method	Specification Limits
Cell Classification	ASTM D1784	12454 min.
Pipe Stiffness	ASTM F949 @ 5%	46 psi min.
	Deflection	
OD, ID	ASTM F949, ASTM	Varies on size, contact District Testing
	D2122	
Wall Thickness	ASTM F949	Varies on size, contact District Testing
(Pipe)		
Socket/Bell	ASTM F949	Varies on size, contact District Testing
Dimensions		
Impact Resistance	ASTM F949	Pass (no cracks, splits or shatter of wall or
		waterway; no wall separation)
Flattening	ASTM F949	Pass (no splitting, cracking, breaking or wall
		separation)
Bond	ASTM F949	Pass (no separation between inner and outer wall)
Length	ASTM F949	No required limits or tolerance

Precast Median Barriers

Certification: Type A

Frequency Manual Reference No: 78, 02 of 02

Specification: 602.03 (a)

Requirements:

602.03 Concrete Barrier and Concrete Glare Screen

Concrete barrier and concrete glare screen may be precast or cast-in-place. The option selected shall be used continuously throughout the project. Irregular sections shall be cast-in-place regardless of the option selected.

Concrete glare screen may only be precast when constructed in combination with new precast barrier. Concrete glare screen shall be cast-in-place when constructed in combination with cast-in-place barrier, and also when constructed on top of existing concrete barrier.

Excavation and compaction shall be in accordance with 605.03(a). Backfilling shall be in accordance with applicable requirements of 605.03(d).

(a) Precast Concrete Barrier and Concrete Glare Screen

Precast concrete barrier and concrete glare screen shall be constructed in accordance with applicable requirements of 707, except the minimum 28-day compressive strength shall be 3,000 psi (20.7 MPa). The precast units shall not be shipped or used until this strength is attained. The surfaces of individual precast units shall vary no more than 1/4 in. in 10 ft (6 mm in 3 m) from the specified cross section, as measured from a longitudinal straightedge. The maximum variation in the vertical and horizontal alignment of adjacent units shall be 1/4 in. (6 mm) across the joint, as measured from a 10 ft (3 m) longitudinal straightedge. Approved bedding may be used to obtain proper alignment of the concrete barrier sections.

Precast/Prestressed Concrete Member Strands (7 Strand Wire)

Certification: Type A

Frequency Manual Reference No.: 80, 05 of 05

Specification: 707.02; 910.01(b) 7, ASTM A416

Requirements:

Uncoated 7 Wire Strand

Uncoated 7 wire strand shall be in accordance with ASTM A 416. The strand shall have the minimum tensile strength and initial tension shown on the plans. The Design Manual requires a minimum Grade 270 (1860), which represents a 270 ksi (1860 MPa) ultimate tensile strength. The Design Manual also requires the use of Low Relaxation (LoLax) wire.

Uncoated 7 wire strand shall be covered by a type A certification in accordance with 916. The certification shall include the lot number, size, cross-sectional area, yield strength, breaking strength, strand composition, modulus of elasticity, as noted in the table below. In addition, a load-elongation curve for each size of strand supplied.

	Specification		Nominal Diameter, in. (mm)						
Property	Deference	0.375	0.438	0.500	0.520	0.563	0.600	0.620	0.700
	Nelei ence	(9.53)	(11.1)	(12.7)	(13.2)	(14.3)	(15.2)	(15.7)	(17.8)
Lot	None				٨٩٩	tated			
Number	None				A\$ 5	lateu			
Size,	ASTM A416	0.369-	0.432-	0.494-	0.514-	0.557-	0.594-	0.614-	0.694-
in. (mm)		0.401	0.464	0.526	0.546	0.589	0.626	0.646	0.726
		(9.38-	(10.95-	(12.55-	(13.05-	(14.15-	(15.05-	(15.55-	(17.65-
		10.18)	11.75)	13.35)	13.85)	14.95)	15.85)	16.35)	18.45)
Minimum	ASTM A416,	20,700	27,900	37,170	40,500	46,530	52,740	56,520	71,500
Yield	ASTM A1061	(92.1)	(124.1)	(165.3)	(180.1)	(207.0)	(234.6)	(251.4)	(318.0)
Strength									
@ 1%									
extension									
, lb_{f} (kN)									
Breaking	ASTM A416,	23,000	31,000	41,300	45,000	51,700	58,600	62,800	79,400
Strength,	ASTM A1061	(102.3)	(137.9)	(183.7)	(200.2)	(230.0)	(260.7)	(279)	(353.2)
lb _f (kN)									

Preformed Elastic Joint Seal

Certification: Type A

Frequency Manual Reference No.: 17, 4 of 8

Specifications: 906.02(a) 3

Requirements: Preformed elastomeric joint seals are used for concrete pavements and are designed to seal the joint and reject incompressibles. The material shall conform to the physical properties as follows:

Property	Test Method	Requirement
Tensile Strength, min., psi (MPa)	ASTM D 412	2000 (13.8)
Elongation at Break, min. %	ASTM D 412	250
Hardness, Type A durometer, points	ASTM D 2240 (modified) ^A	55 ± 5
Oven aging, 70 h at 212°F (100°C)		
Tensile strength, loss, max. %	ASTMD 572	20 max.
Elongation, loss, max. %	ASTMD 373	20 max.
Hardness, Type a durometer, points charge		0 to +10
Oil swell, ASTM Oil 3, 70 h at 212°F (100°C)	ASTM D 471	
Weight change, max. %	ASTMD 4/1	45 max.
Ozone resistance	Λ STM D 1149 (modified) ^B	
20% strain, 300 pphm in air, 70 h at 104°F	ASTWD 1149 (mounted)	no cracks
Low-stiffening, 7 days at 14°F (-10°C)	ASTM D 2240	
Hardness, Type A durometer, points charge	ASTM D 2240	0 to +15
Low temperature recovery, ^c 72h at 14°F	ASTMD 2628 Section 9.2	
(-10°C) 50 % deflection, min. %	AS I'M D 2020, Section 9.2	88
Low temperature recovery, ^c 22 h at -20°F	ASTMD 2628 Section 9.2	
(-29°C), 50 % deflection, min. %	AS I'M D 2020, Section 9.2	83
High temperature recovery, ^c 70 h at 212°F	ASTMD 2628 Section 0.2	
(100°C), 50 % deflection, min. %	AS I'M D 2020, Section 9.2	85
Compression-deflection, at 80 % of nominal	ASTM D 2628 Section 9.3	
width, min., lb/in. (N/m)	AS IN D 2020, Section 7.3	3.5 (613)

^A The term "modified" in the table relates to the specimen preparation. The use of joint seal as the specimen source requires that more plies than specified in either of the modified test procedures be used. Such specimen modification shall be agreed upon by the purchaser and seller prior to testing. The hardness test shall be made with the durometer in a durometer stand as recommended in Test Method D 2240.

^B Test is accordance with Procedure A of Test Method D 518.

^C Cracking, splitting, or sticking of a specimen during a recovery test shall mean that the specimen has failed the test.

SBR Polymer Latex

Certification: Type A

Frequency Manual Reference No.: 1, 01 of 03

Specifications: 902.01a

Requirements:

A PG 58-28 or PG 64-22 binder may be modified by in-line blending with styrene butadiene rubber, SBR, polymer latex at the HMA plant in accordance with ITM 581. A PG 58-28 may be modified to a PG 64-28 and a PG 64-22 may be modified to a PG 70-22.

The SBR polymer latex shall be in accordance with the following:

SBR POLYMER LATEX			
Total Polymer Solids, % by weight	60-72		
Butadiene, % by weight, minimum	68		
Residual Styrene, % by weight, maximum	0.1		
Ash, % of total polymer solids by weight, maximum	3.5		
pH	9-11		
Viscosity, Brookfield model RVF, Spindle No. 2 @ 20 rpm @ 25°C, maximum	2,000		

Structural Backfill for Retaining Wall Systems

Certification: Type A

Frequency Manual Reference No.: 22, 5 of 5

Specification: RSP 732-R-310, RSP 731-B-205, Section 211.03.1 (c)

Requirements:

All Retaining Walls

Structural backfill shall be in accordance with the following criteria:

Property	Criteria	Test Method
pH	5 < pH < 10	AASHTO T 289
Organic Content	1 % max.	AASHTO T 267
Permeability, min.	30 ft/day	AASHTO T 215

Structural backfill sizes 1 in., 1/2 in., No 4, and No. 30, or coarse aggregate sizes No. 5, No. 8, No. 9, No. 11, or No. 12 may be used. Where ground reinforcement is required, size No. 30 shall not be used. Stone aggregate is required. ACBF meeting the size requirements for coarse aggregate No. 5 or No. 8 may also be used.

Testing is required a minimum of once per 12 months from an approved geotechnical laboratory as follows:

- 1. One pH test is required for each bench of stone regardless of the number of sizes of aggregates produced from that bench. One pH test is required for air cooled blast furnace slag. One pH test is required for each source of gravel.
- 2. One organic content test is required for each source of gravel.
- 3. The permeability test is required on the smallest size being supplied from a source. For example, if structural backfill sizes 1 in., 1/2 in. and No. 4 are being supplied from a source then only the No. 4 size would require the permeability test. If coarse aggregate sizes 5, 8, 9, 11, and 12 are being supplied from a source then only the No. 12 size would require permeability testing.

MSE, Steel Bin-Type, Cut-Wall, and Temporary Wire-Faced Retaining Wall Systems

In addition to the above criteria for all retaining walls, structure backfill for retaining wall systems containing metal components in contact with structure backfill shall also be in accordance with the following criteria:

Property	Criteria	Test Method
Chlorides	< 100 ppm	AASHTO T 291
Sulfates	< 200 ppm	AASHTO T 290
Resistivity, min.	3000 Ω cm	AASHTO T 288
Internal friction angle, ϕ , min.	34°	AASHTO T 236* or T 297*

* Under consolidated drained conditions

Testing is required a minimum of once per 12 months from an approved geotechnical laboratory as follows:

- 1. The resistivity shall be tested at 100% saturation.
- 2. For MSE, concrete block, and wire-faced retaining walls, testing for internal friction angle shall be performed on the portion that passes the No. 8 sieve using a sample of the material compacted to 95% in accordance with AASHTO T 99, Method C or D.
- 3. The resistivity, chlorides, and sulfates tests shall be conducted on all sizes of allowable materials except that the requirements for the testing of chlorides and sulfates will be waived if the minimum resistivity exceeds 5000 Ω cm.
- 4. The internal friction test is required only for the No. 4, No. 11 and No. 12 sizes.

Torsion Control Bolts

Certification: Type A

Frequency Manual Reference No.: 100, 03 of 03

Specification: 910.02g

Requirements:

The manufacturer or supplier, whichever is the responsible, shall furnish a test report of each lot that includes the following.

Requirement	Test Method	Specification Limits
Hardness	ASTM F 1852 Table 3	Refer to District Lab
Tensile Strength	ASTM F 1852 Table 4	Refer to District Lab
Proof Load	ASTM F 1852 Table 4	Refer to District Lab
Zinc Coating (Only Mechanically Coated)	ASTM B 695 Class 55, Type I	Minimum Thickness = 53 μm (hot dip not allowed)
Chemical Composition (Type I Bolt)	ASTM F 1852 Table 1	Refer to District Lab
Chemical Composition (Type 3 Bolt)	ASTM F 1852 Table 2	Refer to District Lab

Wire Rope for Cable Barrier Systems (Zinc-Coated Steel Wire Rope)

Certification: Type A

Frequency Manual Reference No.: 117, 02 of 03

Specification: RSP 627-R-546; AASHTO M30

Requirements:

Zinc-Coated Steel Wire Rope for Highway Guardrail

Zinc-Coated Wire Rope shall be in accordance with RSP 627-R-546 and AASHTO M30. Three strands of seven wires each shall constitute the wire rope in accordance with Type I of AASHTO M30 and shall have a nominal diameter of 3/4 in. (19mm). The wires shall be zinc-coated to Class A in accordance with ASSHTO M30.

The Type A Certification for wire rope, as stated in RSP 627-R-546, shall include zinc coating, the minimum breaking strength, the modulus of elasticity and the force applied to pre-stretch the wire rope. A Type A Certification shall be provided for every spool of wire rope installed on the project.

Property	Specification Reference	Specification Limits
Zinc Coating, oz/ft ² (g/m ²)	AASHTO M 30	0.85 (259), min.
Minimum Breaking Strength, lb _f (kN)	RSP 627-R-546	39,000 (173.5), min.
Modulus of Elasticity, psi (MPa)	RSP 627-R-546	11,805,000 (81,393), min.
Pre-stretching Force, lb _f (kN)	RSP 627-R-546	*

* No specification requirement. Value is reported.