

Ratio Study / Trending

2025 Level II

Ratio Studies

- Primary tool used to measure mass appraisal performance.
- Compares assessed values to "objectively verifiable data."
- In our case, compares the assessor's estimate of TTV to indicators of market value in use. (i.e. sales prices and/or independent appraisals)

Ratio Studies

- Ratio studies measure certain aspects of assessments:
 - <u>Accuracy</u> the level of assessment; the overall percentage that TTV represents of market value-in-use.
 - <u>Uniformity</u> relates to fair and equitable treatment of individual properties; uniformity requires that properties be valued equitably within each major property class, township and that each these groups be valued at the same level of assessment.
 - <u>Regressivity / Progressivity</u> relates to whether lower valued properties are under or over-assessed in relation to higher valued properties.

- An assessment ratio is calculated using the following formula: TTV divided by market value = ratio
- Example:

- Let's calculate the assessment ratio on these two sales.
- Sale 1 sale price is \$218,500; TTV is \$232,400.
- Sale 2 sale price is \$98,300; TTV is \$96,200.

- Let's review the answer to the assessment ratios you worked.
- Sale #1 \$232,400 / \$218,500 = 1.064 or 106.4%.
- Sale #2 \$96,200 / \$98,300 = .979 or 97.9%.

- The measures of central tendency we will be working with in this class are:
 - Median
 - Mean
 - Weighted Mean

• <u>The Median is the middle ratio in a rank order of ratios</u>. A rank order lists the ratios in ascending or descending order.

Ratio Studies – Median

- If the sample contains an odd number of sales ratios, the median will be the one which divides the ranked observations into two equal parts.
- If the sample contains an even number of sales ratios, the median will be the arithmetic average of the two ratios in the middle.
- There is a formula for finding the location of the median within the sample once you have ranked the ratios.

- The formula is: n + 1 divided by 2 = 10 cation of the median.
- The letter *n* represents the number of ratios in the sample.

Ratio Studies – Median

Example with "odd" # of sales

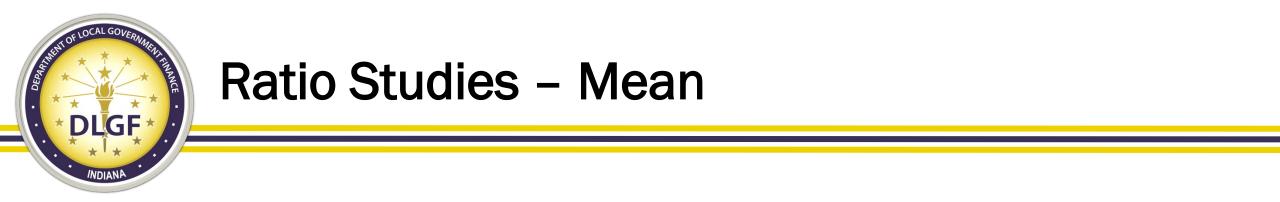
Sales Ratio	Ranked Sales Ratios
0.920	0.920
0.920	0.920
1.055	0.983
0.983	1.055
1.075	1.075
Median	.983 or 98.3%

Ratio Studies – Median

Example with "even" # of sales

<u>Sales Ratio</u>	Ranked Sales Ratios
0.920	0.920
0.920	0.920
1.055	0.935
0.935	0.983
0.983	1.055
1.075	1.075
Median	.959 or 95.9%

• The median is affected very little by extreme values because it is based on the ranks of the data – it represents only the middle value.


• Please go to the Ratio Study Problem / Answer packet with Audio and work Problem #1.

• Please go to the Ratio Study Problem / Answer packet with Audio and work Problem #2.

- The next things we want to look at are the mean and the weighted mean.
- The mean is the result of adding up all of the ratios and dividing by the number of ratios in the sample.

- The mean is the most common measure of central tendency.
- However, it can be heavily influenced by extreme values.

Ratio Studies – Mean

- Mean (arithmetic average) The result of adding all the individual ratios and dividing by the number of ratios.
- Mean = sum of ratios ÷ number of ratios

Sale #	True Tax Value	Sale Price	Sales Ratio
1	\$ 45,800	\$ 49,800	0.920
2	\$ 48,200	\$ 52,400	0.920
3	\$ 42,200	\$ 40,000	1.055
4	\$ 57,150	\$ 58,125	0.983
5	\$ 55,300	\$ 51,450	1.075
	Total of Sa	les Ratios	4.953
	Total Numbe	5	
	Me	99.05%	

• The weighted mean is a measure of central tendency in which each item is adjusted/weighted by a factor reflecting its relative importance to the whole before the items are summed and divided by their number.

- Weighted Mean the total of the TTV's for all sales divided by the total of the sales prices for all sales
- Weighted Mean = Sum of the TTV's ÷ Sum of the Sales

Sale #	True Tax Value		Sale Price
1	\$ 45,800		\$ 49,800
2	\$ 48,200		\$ 52,400
3	\$ 42,200		\$ 40,000
4	\$ 57,150		\$ 58,125
5	\$ 55,300		\$ 51,450
	\$ 248,650	Divided by	\$ 251,775

Weighted Mean

• Please go to the Ratio Study Problem / Answer packet with Audio and work Problem #3.

• Please go to the Ratio Study Problem / Answer packet with Audio and work Problem #4.

Ratio Studies – Absolute Deviation and Absolute Average Deviation

- The absolute deviation measures the difference between each ratio and the median. Also, the absolute deviation ignores the (+) or (-) differences. (See example on next slide.)
- The absolute average deviation measures the average difference between each ratios and the measure of central tendency.
- Both can be calculated around any measure of central tendency but is usually calculated around the median.

• When calculating the absolute deviation you need to ignore the (+) or (-) differences of the ratios.

<u>Sales Ratio</u>	<u>Median</u>	Deviation	<u>Abs Dev</u>
0.928	0.995	+0.067	0.067
1.013	0.995	-0.018	0.018

Ratio Studies – Absolute / Average Absolute Deviation

• Example: Absolute Deviation / Average Absolute Deviation Example

Sale #	True Tax Value	Sale Price	Sales Ratio	Median	Absolute Deviation
1	\$ 45,800	\$ 49,800	0.920	0.983	0.063
2	\$ 48,200	\$ 52,400	0.920	0.983	0.063
3	\$ 42,200	\$ 40,000	1.055	0.983	0.072
4	\$ 57,150	\$ 58,125	0.983	0.983	0.000
5	\$ 55,300	\$ 51,450	1.075	0.983	0.092
	\$ 248,650	\$ 251,775	Total Absolut	te Deviation	0.290
			Average Absol	ute Deviation	0.058

Ratio Studies – COD

- <u>Coefficient of dispersion</u> based on the average absolute deviation, but is expressed as a percentage of the measure of central tendency.
 - Most often used with the median.
 - Calculated by dividing the absolute average deviation by the median and multiplying that answer by 100.

Ratio Studies – Statistics

Coefficient of Dispersion (COD) =

Ave. Abs. Deviation ÷ Median x 100

Sale #	True Tax Value	Sale Price	Sales Ratio	Median	Absolute Deviation
1	\$45,800	\$49,800			
2	\$48,200	\$52,400		0.983	
3	\$42,200	\$40,000	1.055	0.983	0.072
4	\$57,150	\$58,125	0.983	0.983	.000
5	\$55,300	\$51,450	1.075	0.983	0.092
	\$248,650	\$251,775	Total Absolu	te Deviation	0.290
			Average Abso	lute Deviation	0.058
			Med	lian	0.983
			CC	D	5.90%

- There is one other factor that will need to be taken into account when you work with ratio studies the price-related differential (PRD).
- The PRD is a statistic that measures assessment regressivity or progressivity.

Ratio Studies – PRD

- Assessments are considered <u>regressive</u> if high value properties are under assessed relative to low value properties.
- Assessments are considered *progressive* if high value properties are over assessed relative to low value properties.

• PRD is calculated by dividing the mean assessment to sales ratio by the weighted mean ratio.

Ratio Studies – PRD

- Mean = Average of the sales ratios.
- Weighted Mean = Total True Tax Value / Total Sales Price.

Sale #	True Tax Value	Sale Price	Sales Ratio	
1	\$ 45,800	\$ 49,800	0.920	
2	\$ 48,200	\$ 52,400	0.920	
3	\$ 42,200	\$ 40,000	1.055	
4	\$ 57,150	\$ 58,125	0.983	
5	\$ 55,300	\$ 51,450	1.075	
	\$ 248,650	\$ 251,775		
			Mean	.991
			Weighted Mean	.988
			PRD	1.003
PRD = 1.003 or 100.	3%			

Ratio Studies – Statistics

- Measures of Regressivity/Progressivity
- PRD's above 103% tend to indicate assessment regressivity; higher valued properties are under-assessed in relation to lower valued properties.
- PRD's below 98% tend to indicate assessment progressivity; higher valued properties are over-assessed in relation to lower valued properties.

• Now that we have discussed all the terms, let's review a completed Ratio Study.

Ratio Study – Example

Sale	TTV	Sales Price	Sales Ratio	Median	Abs Dev
1	81,900	86,000	0.952	0.958	0.006
2	68,900	72,000	0.957	0.958	0.001
3	66,200	69,000	0.959	0.958	0.001
4	135,200	120,000	1.127	0.958	0.169
			Total Abs. Dev.		0.177
	352,200	347,000	Avg. Abs. Dev		0.0443
			# of sales	4	
			Mean	0.999	(Average of the 4 sales ratios)
					(Middle sales ratio - Average of
			Median	0.958	.957 & .959)
			Wghtd. Mean	1.015	\$352,200 / \$347,000
			COD	4.624	Avg. Abs Dev / Median x 100
			PRD	0.984	Mean / Wghtd. Mean

- Now that we have reviewed the ratio study example, you will now work a ratio study.
- You will calculate the Sales Ratio, Mean, Median, Absolute Deviation, Average Absolute Deviation, COD, Weighted Mean & PRD.

• Please go to the Ratio Study Problem / Answer packet with Audio and work Problem #5.

Evaluating Ratio Study Results

- The Annual Adjustments and Equalization Standards Rule sets the following standards:
 - 1. Accuracy Median assessment ratio for any class within a township must be between 90% and 110% of TTV.
 - 2. Uniformity The coefficient of dispersion for residential improved must be 15% or less and 20% or less for all other classes within a township.
 - 3. Regressivity/Progressivity The PRD for any class within a township must be between 98% and 103%.

- This concludes the Ratio Study tutorial and is a reminder that should you have questions you can email these questions to the Department.
- Please send emails to <u>Level2@dlgf.in.gov</u>.