2024 INDIANA CONTENT CONNECTORS MATHEMATICS

GRADE 5

in.gov/doe

Indiana Content Connectors Context and Purpose

Introduction

The Indiana Content Connectors for Grade 5 Mathematics are the result of a process designed to identify, evaluate, synthesize, and create high-quality learning expectations for Indiana students with significant cognitive disabilities.

The Indiana Department of Education (IDOE) convened stakeholder committees to review proposed revisions to Indiana's Alternative Standards, known as content connectors. The content connectors are designed to measure the knowledge and skills of students with the most significant cognitive disabilities and are assessed with the state's alternate assessment. The content connectors are designed to ensure that all Indiana students in this population are prepared with essential knowledge and skills needed to access employment, enrollment, or enlistment leading to service.

What are the Content Connectors and how should they be used?

The Indiana Content Connectors are designed to help educators, parents, students, and community members understand the necessary content for each grade level, and within each content area domain, to access employment, enrollment, or enlistment leading to service. These content connectors should form the basis for strong core instruction for all students at each grade level and content area. The content connectors identify the minimum academic content or skills to which Indiana students need access in order to be prepared for success after graduation, but they are not an exhaustive list.

While the Indiana Content Connectors establish key expectations for knowledge and skills and should be used as the basis for curriculum, the content connectors by themselves do not constitute a curriculum. It is the responsibility of the local school corporation to select and formally adopt curricular tools, including textbooks and any other supplementary materials, that align with Indiana Content Connectors. Additionally, corporation and school leaders should consider the appropriate instructional sequence of the content connectors as well as the length of time needed to teach each one. Every content connector has a unique place in the continuum of learning, but each content connector will not require the same amount of time and attention. A deep understanding of the vertical articulation of the standards will enable educators to make the best instructional decisions. These content connectors must also be complemented by robust, evidence-based instructional practices to support overall student development. By utilizing strategic and intentional instructional practices, other areas such as STEM and employability skills can be integrated with the content connectors.

Acknowledgments

IDOE appreciates the time, dedication, and expertise offered by Indiana's K-12 general and special educators, higher education professors, representatives from business and industry, families, and other stakeholders who contributed to the development of the Indiana Content Connectors. We wish to specially acknowledge the committee members, as well as participants in the public comment period, who dedicated many hours to the review and evaluation of these content connectors designed to prepare Indiana students for success after graduation.

Grade 5 Mathematics

Standards and content connectors identified as essential for mastery by the end of the grade level are indicated with gray shading and an "E."

| Indiana Academic Standards | Content Connectors |
| :--- | :--- | :--- |
| Number Sense | | \left\lvert\, \(\left.\begin{array}{l}5.NS.1a: Use a number line to compare two fractions with same or

different denominators, two mixed numbers, or two decimals to the

hundredths place. Record the comparisons using symbols >, <, or =.

Limit denominators to 2, 3, 4, 5, 6, 8, 10 and 12. (E)\end{array}\right.\right]\)| 5.NS.1: Use a number line to compare and order fractions, mixed |
| :--- |
| numbers, and decimals to thousandths. Write the results using >, |
| and < symbols. (E) |

5.CA.2: Solve real-world problems involving multiplication and division of whole numbers (e.g., by using equations to represent the problem). In division problems that involve a remainder, explain how the remainder affects the solution to the problem. (E)
5.CA.3: Add and subtract fractions and mixed numbers with unlike denominators using strategies or the standard algorithm.
5.CA.4: Solve real-world problems involving addition and subtraction of fractions referring to the same whole, including cases of unlike denominators (e.g., by using visual fraction models and equations to represent the problem). Use benchmark fractions and number sense of fractions to estimate mentally and assess whether the answer is reasonable. (E)
5.CA.5: Use visual fraction models to multiply a fraction by a fraction or a whole number. (E)
5.CA.6: Use visual fraction models and numbers to divide a fraction by a fraction or a whole number. (E)
5.CA.7: Solve real-world problems involving multiplication of fractions, including mixed numbers (e.g., by using visual fraction models and equations to represent the problem). (E)
5.CA.8: Solve real-world problems involving division of fractions and mixed numbers (e.g., by using visual fraction models and equations to represent the problem). (E)
5.CA.9: Add, subtract, multiply, and divide decimals to hundredths, using models or drawings and strategies based on place value or the properties of operations. Describe the strategy and explain the reasoning.
5.CA.2a: Solve real-world problems involving multiplication and division of whole numbers with or without remainders within 200. (E)
5.CA.3a: Add and subtract fractions with unlike denominators limiting denominators to $2,4,5$, and 10 .
5.CA.4a: Solve real-world problems involving addition and subtraction of fractions with unlike denominators. Limit denominators to $2,4,5$, and 10. (E)
5.CA.5a: Use visual fraction models to multiply a fraction by a fraction or a whole number up to four.
5.CA.6a: Use visual fraction models to divide a fraction by a fraction or a whole number up to four.
5.CA.7a: Solve real-world problems involving multiplication of a fraction by a fraction or a whole number up to four using visual fraction models. (E)
5.CA.8a: Solve real-world problems involving the division of a fraction by a fraction or a whole number up to four using visual fraction models. (E)
5.CA.9a: Add and subtract decimals to hundredths. Multiply, and divide decimals to hundredths using models or drawings and strategies based on place value or the properties of operations.
5.CA.10: Solve real-world problems involving addition, subtraction, multiplication, and division with decimals to hundredths including problems that involve money in decimal notation (e.g., by using equations, models or drawings, and strategies based on place value or properties of operations to represent the problem). (
5.CA.11: Represent real-world problems and equations by graphing ordered pairs in the first quadrant of the coordinate plane, and interpret coordinate values of points in the context of the situation.
5.CA.10a: Solve one-step real-world money problems involving addition, subtraction, multiplication, and division with decimals to hundredths place. (E)
5.CA.11a: Represent real-world problems by graphing ordered pairs in the first quadrant of the coordinate plane. (E)

Geometry	
5.G.1: Identify, describe, and draw triangles (right, acute, obtuse) and circles using appropriate tools (e.g., ruler or straightedge, compass, and technology). Define and model the relationship between radius and diameter.	5.G.1a: Model right, acute, and obtuse triangles using appropriate tools (e.g., ruler or straightedge, compass, or technology) and identify the radius and diameter in circles.
Measurement	

5.M.4: Find the volume of a right rectangular prism with whole-number side lengths by packing it with unit cubes, and show that the volume is the same as would be found by multiplying the edge lengths or multiplying the height by the area of the base. (E)

5.M.5: Apply the formulas $V=I \times w \times h$ and $V=B \times h$ for right

 rectangular prisms to find volumes of right rectangular prisms with whole-number edge lengths to solve real-world problems and other mathematical problems. (E)5.M.4a: Find the volume of a right rectangular prism with whole number side lengths by packing it with unit cubes. (E)
5.M.5a: Find the volume of a right rectangular prism with whole number side lengths when given the formula $V=l \times w \times h$, a model, and all required measurements.

Data Analysis

5.DA.1: Formulate questions that can be addressed with categorical and numerical data and make predictions about the data. Collect, organize, and graph data from observations, surveys, and experiments using line plots with fractional intervals, histograms, or other graphical representations that appropriately represent the data set. (E)
5.DA.2: Calculate measures of central tendency (mean, median, and mode) to describe a data set. Analyze data sets to determine which measure of central tendency appropriately describes the distribution of data. (E)
5.DA.1a: Generate questions that can be answered with a given graph (e.g., line plots, bar graphs, and line graphs). Collect, organize, and graph data from observations, surveys, and experiments that appropriately represent the data set. (E)
5.DA.2a: Calculate the mean, median, and mode to describe an ordered data set (mode does not require calculation, only observation and counting).

