

2024 PROBABILISTIC MONITORING WORK PLAN FOR THE UPPER WABASH BASIN

PREPARED BY

Mitchell C. Owens
Probabilistic Monitoring Section

WATERSHED ASSESSMENT and PLANNING BRANCH
Indiana Department of Environmental Management
Office of Water Quality
100 North Senate Avenue
MC65-40-2 Shadeland
Indianapolis, Indiana 46204-2251

March 31, 2024 B-069-OWQ-WAP-XXX-24-W-R0 This page is intended to be blank

Approval Signatures

Stacey Sobat, Section Chief Probabilistic Monitoring Section	$\frac{4/16/202}{\text{Date}}$
Ali Meils, Section Chief	4/10/2021
Targeted Monitoring Section	Date
I mothy Bereren	4/16/2024
Timothy Bowren, Project Quality Assurance Officer, Technical and Logistical Services Section	Date
My L	04/16/2029 Date
David Tsetse, Section Chief, Quality Assurance Manager Technical and Logistical Services Section	Date
Kristen Arnold, Branch Chief, Watershed Assessment and Planning Branch	<u>4/16/202</u> 4 Date

IDEM Quality Assurance Staff reviewed and approves this Sampling and Analysis Work Plan.

Quality Assurance Staff

IDEM Office of Program Support

4/22/2024

Date

This page is intended to be blank

Work Plan Organization

This sampling and analysis work plan is an extension of the existing Indiana Department of Environmental Management (IDEM) Watershed Assessment and Planning Branch (WAPB) July 2023 "Quality Assurance Project Plan (QAPP) for Indiana Surface Water Programs" (Surface Water QAPP) (IDEM 2023a) and October 2020 "QAPP for Biological Community and Habitat Measurements" (IDEM 2020a), and serves as a link to the existing QAPP as well as an independent QAPP of the project. Per the United States Environmental Protection Agency (U.S. EPA) guidance for QAPPs (U.S. EPA 2006) and the U.S. EPA 2002 Guidance for Quality Assurance Project Plans (U.S. EPA 2002), this work plan establishes criteria and specifications pertaining to a specific water quality monitoring project that are usually described in the following four sections as QAPP elements.

A. Project Management

- A.1. Project Objective
- A.2. Project or Task Organization and Schedule
- A.3. Background and Project or Task Description
- A.4. Data Quality Objectives (DQOs)
- A.5. Training and Staffing Requirements

B. Data Generation and Acquisition

- B.1. Sampling Procedures
- B.2 Analytical Methods
- B.3. Sample and Data Acquisition Requirements
- B.4. Quality Control (QC) Measures Specific to the Project
- B.5. Field Instrument Testing and Calibration

C. Assessment and Oversight

- C.1. External and Internal Checks
- C.2. Audits
- C.3. Data Quality Assessments (DQAs)
- C.4. Quality Assurance and Quality Control (QA/QC) Review Reports

D. Data Validation and Usability

- D.1. Data Handling and Associated QA/QC activities
- D.2. QA/QC Review Reports
- D.3. Laboratory and Estimated Cost

Table of Contents

Approv	/al Signatures	i
Work F	Plan Organization	iii
Table	of Contents	iv
List of	Figures	V
List of	Attachments	V
List of	Appendices	V
List of	Acronyms	vi
A.	Project Management	1
A.1.	Project Objective	1
A.2.	Project or Task Organization and Schedule	2
A.3.	Background and Project or Task Description	4
A.4.	Data Quality Objectives (DQO)	4
A.5.	Training and Staffing Requirements	16
B.	Measurement and Data Acquisition	19
B.1.	Sampling Design and Site Locations	19
B.2.	Sampling Methods and Sample Handling	21
B.3.	Analytical Methods	
B.4.	Quality Control and Custody Requirements	25
B.5.	Field Parameter Measurements/Instrument Testing/Calibration	30
C.	Assessment and Oversight	31
C.1.	Data Quality Assessment Levels	32
D.	Data Validation and Usability	32
D.1.	Quality Assurance – Data Qualifiers and Flags	32
D.2.	Data Usability	32
D.3.	Information, Data, and Reports	33
D.4.	Laboratory and Estimated Cost	33
E.	References	35
F	Distribution List	40

List of Figures Figure 1. Potential Sampling Sites for the Upper Wabash River Basin......11 **List of Tables** Table 1. 2023 Probabilistic Monitoring Tasks, Schedule, and Evaluation......2 Table 2. Water Quality Criteria [327 IAC 2-1-6]7 Table 3. List of Potential Sites for the Upper Wabash River Basin.11 Table 5. Project Roles, Experience, and Training......16 Table 6. Bacteriological and Field Parameters showing method and IDEM quantification limit......27 Table 7. Bacteriological and Water Chemistry Sample Container, Preservative, and Holding Time Requirements......27 Table 8. Water Chemistry Parameters with Test Method and IDEM and Laboratory Reporting Limits......28 Table 10. Personnel Safety and Reference Manuals......34 **List of Attachments** Attachment 1. IDEM Site Reconnaissance Form......41 Attachment 2. IDEM Stream Sampling Field Data Sheet.......42 Attachment 3. IDEM Algal Biomass Lab Data Sheet43 Attachment 4. IDEM Fish Collection Data Sheet......40 Attachment 5. IDEM OWQ Biological Qualitative Habitat Evaluation Index......42 Attachment 6. IDEM OWQ Field Chain of Custody Form44 Attachment 7. IDEM Corvallis Water Sample Analysis Request Form (Pace Attachment 8. IDEM OWQ Biological Samples Laboratory Chain of Custody Form46 **List of Appendices** Appendix 1. Pace Laboratory Inc., Indianapolis: Accreditation Documents47

List of Acronyms

AIMS Assessment Information Management System

ALUS Aquatic Life Use Support

ASTM American Society for Testing and Materials

CAC Chronic Aquatic Criterion

CALM Consolidated Assessment Listing Methodology

CFU Colony Forming Unit DO Dissolved oxygen

DQA Data Quality Assessment DQO Data Quality Objective

E. coli Escherichia coli

GPS Global Positioning System
HDPE High-density polyethylene
HUC Hydrologic Unit Code

IDOH Indiana Department of Health (formerly ISDH)

IAC Indiana Administrative Code
IBI Index of Biotic Integrity

IDEM Indiana Department of Environmental Management

μm Micrometer

m Meter

mg/L Milligram per liter
MHAB Multihabitat
mL Milliliter

MPN Most Probable Number

MS/MSD Matrix Spike and Matrix Spike Duplicate

NHD National Hydrography Database

NHEERL National Health Environmental Effects Research Laboratory

NPDES National Pollutant Discharge Elimination System

NTU Nephelometric Turbidity Unit(s)

OHEPA Ohio Environmental Protection Agency

OWQ Office of Water Quality

PPE Personal Protective Equipment

QA Quality Assurance
QC Quality Control

QAPP Quality Assurance Project Plan
QHEI Qualitative Habitat Evaluation Index

SM Standard Method

SOP Standard Operating Procedure

SU Standard Units

TDS Total Dissolved Solids
TKN Total Kjeldahl Nitrogen
TMDL Total Maximum Daily Load

U.S. EPA United States Environmental Protection Agency

USGS Unites States Geological Survey

WAPB Watershed Assessment and Planning Branch

WP Work plan

DEFINITIONS

Assessment Unit Reaches of waterbodies, with similar features,

assigned unique identifiers, to which all

assessment information for a specific reach is associated, and which allow for mapping with

geographic information systems.

Backwater A part of the river not reached by the current,

where the water is stagnant.

Elutriate To purify, separate, or remove lighter or finer

particles by washing, decanting, and settling.

15-minute pick A component of the multihabitat

macroinvertebrate sampling method, used to maximize taxonomic diversity while in the field. The 1-minute kick sample and 50-meter sweep sample collected at a site are first combined and elutriated. Macroinvertebrates are then manually removed from the resulting sample for

15 minutes.

50-meter sweep sample A component of the multihabitat

macroinvertebrate sampling method in which approximately 50 meters of all available habitat in a stream or river is sampled with a standard 500 micrometer mesh width D-frame dip net by

taking 20–25 individual "jab" or "sweep" samples, which are then composited.

Impoundment A body of water confined within an enclosure,

such as a reservoir.

Lotic A waterbody, such as a stream or river, in which

the water is flowing.

Macroinvertebrate Aquatic animals which lack a backbone, are

visible without a microscope, and spend some

period of their lives in or around water.

Marsh An area of low-lying land that is flooded in wet

seasons and typically remains waterlogged at

all times.

1-minute kick sample A component of the multihabitat

macroinvertebrate sampling method in which approximately 1 m² of riffle or run substrate habitat in a stream or river is sampled with a standard 500 µm mesh width D-frame dip net

for approximately 1 minute.

Ocular reticle A thin piece of glass marked with a linear or

areal scale that is inserted into a microscope ocular, superimposing the scale onto the image

viewed through the microscope.

Perennial Stream A stream that has continuous flow in the stream

bed all year during years of normal rainfall. Water must be present in at least 50% of the stream reach during the time of fish community

sampling.

Periphyton Algae attached to an aquatic substrate.

Reach A segment of a stream used for sampling.

Target A sampling point which falls on a perennial

stream within the basin of interest and the

boundaries of Indiana.

Wetland Land areas that are wet for at least part of the

year, are poorly drained and are characterized by hydrophytic vegetation, hydric soils, and

wetland hydrology.

A. Project Management

A.1. Project Objective

The main objective of the probabilistic monitoring project is to provide a comprehensive, unbiased assessment of the ability of rivers and streams in the Upper Wabash River Basin to support aquatic life and recreational uses. Sampling for this project will begin in April and continue through November 2024, conditions permitting, with collected samples analyzed for chemical, physical, and biological parameters. Laboratory processing and data analysis for the project will continue through spring of 2025. Data collected during probabilistic monitoring will be used for the following purposes:

- To provide water quality and biological data for assessment of aquatic life and recreational uses as integral components of the IDEM biennial Integrated Water Monitoring and Assessment Report (Integrated Report); thus, satisfying Clean Water Act (CWA) sections 305(b) and 303(d) reporting requirements to the U.S. EPA (33 U.S.C. §1251 et seq. 1972).
- To give a statistically valid estimation of the percent of stream miles supporting or nonsupporting for aquatic life and recreational uses in the basin of interest.
- To provide water quality and biological data which may be useful for municipal, industrial, agricultural, and recreational decision-making processes. These include the Total Maximum Daily Load (TMDL) process and National Pollutant Discharge Elimination System (NPDES) permit modeling of waste load allocations.
- To compile water quality and biological data for trend analyses and future pollution abatement activities.
- To aid in refined chemical and narrative biological water quality criteria.

A.2. Project or Task Organization and Schedule

Table 1. 2024 Probabilistic Monitoring Tasks, Schedule, and Evaluation

Activity	Date(s)	Number of Sites	Frequency of Sampling Related Activity	Parameter to be Sampled	How Evaluated
Site selection	Dec 2023	Minimum 100 per basin of interest			Randomly ordered list generated by the National Health Environmental Effects Research Laboratory (NHEERL), Western Ecology Division, Corvallis, OR. Sites are stratified in statistically equal numbers of 1 st , 2 nd , 3 rd , and 4 th + stream order sites
Site reconnaissance	Jan 2 – Mar 15 2024	All selected sites	At least one visit but may require several to obtain final approval		Landowner approval, stream access, and safety characteristics for the first 75 "Target" sites; "Nontarget" designations for remaining 25 sites.
Bacteriological sampling	Apr 15 – May 23 2024	First 40 target sites	Five times at equally spaced intervals over a 30 calendar-day period	Escherichia coli (E. coli)	Geometric mean (action level is ≥125 Colony Forming Units (CFU)/100mL or ≥125 Most Probable Number (MPN)/100 mL); sampled during recreational season (April – October)
Biological sampling	Jun – mid Nov 2024	First 38 target sites	Fish community (Jun 3 – Oct 18) Macroinvertebrate community	Fish community; Macroinvertebrate	Fish Index of Biotic Integrity (IBI) Macroinvertebrate IBI (mIBI)
			(Jul 15 – Nov 15) Qualitative Habitat Evaluation Index (QHEI), once per sample	community; Habitat quality	QHEI evaluated separately for fish and macroinvertebrate communities

Table 1. 2024 Probabilistic Monitoring Tasks, Schedule, and Evaluation (cont.)

Activity	Date(s)	Number of Sites	Frequency of Sampling Related Activity	Parameter to be Sampled	How Evaluated
Water chemistry	Apr –	First 45	Once each in April, June-	Total phosphorous	>0.3 mg/L (nutrients)
	Sep/Oct	target	July, and September-	Nitrogen, nitrate + nitrite	>10.0 mg/L (nutrients)
	2024	sites	October with a minimum 30	Dissolved oxygen (DO)	<4.0 mg/L (warm water aquatic life or nutrients);
			days between sampling		<6.0 mg/L (cold water fish);
			events		>120% saturation (nutrients)
				pH	>9.0 Standard Units (SU) (nutrients);
					<6.0 or >9.0 SU (warm water aquatic life)
				Algal conditions	Excessive (nutrients, based on field
					observation)
				Dissolved metals	Chronic Aquatic Criterion (CAC) based on
				(See Table 8)	hardness
				Dissolved arsenic	CAC based on concentration of 150 µg/L, a conversion factor and water-effect ratio of 1
				Nitrogen ammonia	CAC based on pH and temperature
				Chloride	CAC based on hardness and sulfate
				Free cyanide*	CAC 5.2 μg/L
				Sulfate	CAC based on hardness and chloride
				Total Dissolved Solids	750 mg/L (public water supply criterion)
				Selenium	3.1 µg/L CAC (Acipenseriformes waters)
					5.5 µg/L CAC (Acipenseriformes-free waters)
				Dissolved Organic	There are no criteria for this parameter in the
				Carbon	Indiana Administrative Code (IAC).
Algal samples	Sep –	First 45	Once with the 3 rd water	Algal Diatoms	Diatom Index of Biotic Integrity
	Oct 2024	target	chemistry sample in		
		sites	September or October		

^{*}Analyzed only where the total value exceeds the free cyanide criterion of 5.2 $\mu g/L$.

A.3. Background and Project or Task Description

The Probabilistic Monitoring Program, created in 1996, is operated through the WAPB of IDEM. Other organizations which help with data preparation, collection, and analysis include private laboratories under contract with the State of Indiana, the Department of Biological and Environmental Sciences at Georgia College and State University, the U.S. EPA National Health Environmental Effects Research Laboratory (NHEERL), U.S. EPA Region V, and the Indiana Department of Natural Resources. Landowners and property managers throughout the state also participate in the Probabilistic Monitoring Program by assisting staff with access to remote stream locations for sample collection.

The Probabilistic Monitoring Program provides a comprehensive, unbiased assessment of all Indiana streams for their ability to support aquatic life and recreational uses by sampling randomly generated sites in major Indiana river basins. Major river basins are sampled using a nine-year rotating basin approach to assess and characterize overall water quality and biological integrity. For target sites, the following categories of data will be investigated and utilized for assessment purposes: bacteriological contamination indicated by *E. coli* counts; water chemistry; diatom, macroinvertebrate, and fish assemblages; and habitat evaluations.

A.4. Data Quality Objectives (DQO)

The DQO process (U.S. EPA 2006) is a planning tool for data collection activities. It provides a basis for balancing control of data uncertainty against available resources. The DQO process is required for all significant data collection efforts of a project. The process is a seven-step systematic planning process used to clarify study objectives, define the types of data needed to achieve the objectives, and establish decision criteria for evaluating data quality. The DQO process for the Probabilistic Monitoring Program is identified in the following seven steps.

A.4.1. State the Problem

Assessments: Indiana is required to assess all waters of the state to determine their designated use attainment status. "Surface waters of the state are designated for full-body contact recreation" and "will be capable of supporting" a "well-balanced, warm water aquatic community" [327 IAC 2-1-3]. This project will gather bacteriological, biological, chemical, and habitat data for the purpose of assessing the designated use attainment status of streams in the Upper Wabash River Basin.

A.4.2. Identify the Goals of the Study

The principal question of this study is determining the percent of stream miles supporting or nonsupporting for aquatic life use and recreational use in the Upper Wabash River Basin. To evaluate this question in a statistically valid way, each target site will be sampled for concentrations of physical, chemical, and biological parameters. Sites will be evaluated

as supporting or nonsupporting following the decision-making processes that are described in Indiana's 2024 Consolidated Assessment Listing Methodology (CALM). Water quality criteria are shown in Table 2 [327 IAC 2-1-6] and the Indiana 2024 CALM (IDEM 2024).

In addition to the chemical and bacteriological criteria listed in Table 2, data for several nutrient parameters will be evaluated with the benchmarks listed below (IDEM 2024). Assuming a minimum of three sampling events, if two or more of the conditions below are met on the same date, the waterbody will be classified as nonsupporting due to excessive nutrients.

- Total phosphorus: one or more measurements >0.3 mg/L
- Nitrogen, (nitrate and nitrite): one or more measurements >10.0 mg/L
- Dissolved oxygen: one or more measurements <4.0 mg/L, or measurements that are consistently at/close to the standard, in the range of 4.0-5.0 mg/L, or dissolved oxygen percent saturation >120%
- pH: one or more measurements >9.0 pH units or measurements consistently at or close to the standard, in the range of 8.7–9.0 pH units
- Algal conditions: visually observed as "Excessive" by trained staff using best professional judgment. Further explanation of this observance is documented in Measurement and Data Acquisition under Algal Community Data on page 29.

Biological criteria:

Indiana narrative biological criteria [327 IAC 2-1-3] states that "all waters, except as described in subdivision (5)," (i.e., limited use waters) "will be capable of supporting" a "well-balanced, warm water aquatic community". The water quality standard definition of a "well-balanced aquatic community" is "an aquatic community that: (A) is diverse in species composition; (B) contains several different trophic levels; and (C) is not composed mainly of pollution tolerant species" [327 IAC 2-1-9]. An interpretation or translation of narrative biological criteria into numeric criteria would be as follows: A stream segment is nonsupporting for aquatic life use when the monitored fish or macroinvertebrate community receives an IBI score of less than 36 (on a scale of 0–60 for fish and 12–60 for macroinvertebrate communities), which is considered "Poor" or "Very Poor" (IDEM 2024).

Periphyton samples will be preserved and transported to the IDEM laboratory, located in the IDEM Shadeland facility. Diatoms will be identified and enumerated by Georgia College and State University, Department of Biological and Environmental Sciences. Following data entry, the diatom IBI score will be calculated; however, assessment methodology for aquatic life use has not been finalized yet.

Following the assessment of each site sampled in the Upper Wabash River Basin, the percentage of stream miles attaining and not attaining recreational use and aquatic life use designations will be calculated. First, a spreadsheet is developed which lists the following site information:

- All sites that were initially drawn
- Their status, including whether access denied; site sampled for biology, chemistry, or both; an overdraw site that was not needed
- The assessment status of the site, including impaired; not impaired;
 NA for denials and unused overdraw sites
- A weight based on stream order and stream miles within the basin.

This data is then analyzed by a software package (*spsurvey*) used with the R statistics environment (IDEM 2020b). Instructions on downloading and using the software are available at:

http://archive.epa.gov/nheerl/arm/web/html/software.html. The end product of this analysis is an estimate of the number of stream miles that are, or are not, impaired along with confidence intervals for that particular basin. Calculated mileages will be reported to U.S. EPA in the 2026 update of Integrated Report. Sites not attaining recreational use criteria, or the aquatic life use support (ALUS) designation will be listed in the CWA section 303(d) List of Impaired Waters for Indiana (Consolidated List). Sites not attaining the ALUS designation may be considered for possible additional sampling to determine the extent, causes, and likely sources of the ALUS non-attainment area as a watershed characterization project by the Targeted Monitoring Program.

Site-specific data will be used to classify associated assessment units into one of five major categories in the state's Consolidated List (IDEM 2024), which will be included in IDEM's 2026 Integrated Report.

Table 2. Water Quality Criteria [327 IAC 2-1-6]

Parameter	Level	Criterion
Dissolved metals (Cd, Cr III, Cr VI, Cu, Pb, Ni, Zn	Calculated based on hardness	CAC
Dissolved arsenic III	150 µg/L (calculated based on a conversion factor and water-effect ratio of 1)	CAC
Selenium	3.1 µg/L 5.5 µg/L	CAC (Non-Great Lakes, waters with Acipensiformes) CAC (Non-Great Lakes, Acipensiformes-free waters)
Ammonia nitrogen	Calculated based on pH and temperature	CAC
Chloride	Calculated based on hardness and sulfate	CAC
Free cyanide	5.2 µg/L (analyzed only if Total Cyanide result exceeds the CAC for Free Cyanide)	CAC
Dissolved oxygen	At least 5.0 mg/L (warm water aquatic life) At least 6.0 mg/L (cold water fish*)	Not less than 4.0 mg/L at any time. Not less than 6.0 mg/L at any time and shall not be less than 7.0 mg/L in areas where spawning occurs during the spawning season and in areas used for imprinting during the time salmonids are being
pH	6.0 - 9.0 SU	imprinted. Must remain between 6.0 and 9.0 SU except for daily fluctuations that exceed 9.0 due to photosynthetic activity
Nitrogen, Nitrate and nitrite	≤10 mg/L	HHC at point of drinking water intake
Sulfate	Calculated based on hardness and chloride	In all waters outside the mixing zone
E. coli (April–October Recreational season)	125 CFU/100mL or 125 MPN/100 mL 235 CFU/100 mL or 235 MPN/100 mL	5 sample geometric mean based on at least 5 samples equally spaced over a 30-day period. Not to exceed in any one sample in a 30-day period except in cases where there are at least 10 samples, 10% of the samples may exceed the criterion
Dissolved solids	750 mg/L	Not to exceed at point of drinking water intake

CAC = Chronic Aquatic Criterion, SU = Standard Units, HHC = Human Health Criteria, MPN = Most Probable Number, CFU = Colony Forming Unit

^{*}Waters protected for cold water fish include those waters designated by the Indiana Department of Natural Resources for put-and-take trout fishing, as well as salmonid waters listed in 327 IAC 2-1.5-5.

A.4.3. Identify Information Inputs

Under the probabilistic design, field monitoring activities are required to collect physical, chemical, algal, bacteriological, biological, and habitat data. These data are required to address the necessary decisions previously described. Monitoring activities take place at target sites for which permission to access has been granted by the necessary landowners or property managers. Due to the statistical nature of the survey design, historical data will not be used in the calculation of predicted stream mileages supporting or nonsupporting aquatic life or recreational uses. Collection procedures for field measurements, bacteriological, algal, chemical, biological, and habitat data will be described in detail under B. Measurement and Data Acquisition.

A.4.4. Define the Boundaries for the Study

For the purpose of this program, the Upper Wabash River Basin (Figure 1) is geographically defined as within the borders of Indiana contained by the 8-digit Hydrologic Unit Codes (HUC) 05120101, 05120102, 05120103, 05120104, 05120105, 05120106, and 051201017. Predominant land uses are provided below for each HUC using the 2021 National Land Cover Database for the Conterminous United States (Dewitz 2023).

- The Upper Wabash sub-basin (05120101), located in north-central Indiana, drains approximately 1333 square miles within Indiana's borders. Predominant land uses are cropland (74%), urban (11%), forest (10%), and pasture (3%).
- The Salamonie sub-basin (05120102), located in north-central Indiana, drains approximately 560 square miles. Predominant land uses are cropland (79%), forest (10%), urban (6%), and pasture (2%).
- The Mississinewa sub-basin (05120103), located in north-central Indiana, drains approximately 786 square miles within Indiana's borders. Predominant land uses are cropland (74%), forest (10%), urban (10%), and pasture (3%).
- The Eel sub-basin (05120104), located in north-central Indiana, drains approximately 816 square miles. Predominant land uses are cropland (73%), forest (12%), urban (8%), pasture (4%), and wetlands (2%).
- The Middle Wabash-Deer sub-basin (05120105), located in north-central Indiana, drains approximately 669 square miles. Predominant land uses are cropland (80%), forest (9%), urban (8%), and pasture (2%).
- The Tippecanoe sub-basin (05120106), located in north-central Indiana, drains approximately 1950 square miles. Predominant land uses are cropland (77%), forest (8%), urban (8%), wetland (4%), and pasture (3%)

• The Wildcat sub-basin (05120107), located in north-central Indiana, drains approximately 805 square miles. Predominant land uses are cropland (77%), urban (12%), forest (7%), pasture (2%), and wetlands (2%).

The target sample population for the basin is defined as all perennial streams in the Upper Wabash River Basin that lie within the geographic boundaries of Indiana. The sample frame is comprised of all rivers and streams as indexed through the NHDPlus HR dataset (Moore et al. 2019). Marshes, wetlands, backwaters, impoundments, canals, ditches, dry sites, and streams with no apparent channel, including submerged, or run underground either through natural processes or by anthropogenic channel alterations, are excluded as they are considered nontarget populations. Table 3 gives the site status for 150 potential sampling sites for the Upper Wabash River Basin. From these 150 potential sites, the first 45 target sites will be sampled for physical, chemical, and algal parameters. Bacteriological sampling will be completed at the first 40 target sites. Biological communities and habitat information will be sampled at the first 38 target sites. For those sites listed as "Target, Approved" but not sampled in Table 3, the site will be listed as "Notneeded" when using the R statistics environment software (R Core Team 2021) package spsurvey (available on the U.S. EPA Aquatic Resources Monitoring and Analysis webpage,

http://archive.epa.gov/nheerl/arm/web/html/software.html or at https://cran.r-project.org/web/packages/spsurvey/spsurvey.pdf) to calculate the percent of perennial stream miles in the basin that support or do not support aquatic life and recreational uses (IDEM 2020b). Sites listed as "Other, Deadline 3/15/2024" in Table 3 were thought to be part of the target population; however, the landowner could not be contacted before the site reconnaissance deadline which occurred on March 15, 2024.

A.4.5. Develop the Analytical Approach

Samples will be collected for physical, chemical, bacteriological parameters, and biological communities when the flow rate of the stream is safe for staff to enter. Considerations include times when water levels are at or above median base flow; when hazardous weather conditions like thunderstorms and heavy rain are in the vicinity; and when unexpected physical barriers prevent access to the site. The field crew chief makes the final determination if the stream is safe to enter. Even if the weather conditions and stream flow are safe, sample collections for biological communities may be postponed at a particular site for one to four weeks due to scouring of the stream substrate or instream cover following a high-water event resulting in nonrepresentative samples.

For assessment purposes in the Integrated Report, aquatic life use and recreational use support decisions will include independent evaluations of

chemical, biological, and bacteriological criteria as outlined in Indiana's 2024 CALM (IDEM 2024). The fish assemblage will be evaluated at each site using the appropriate IBI (Simon 2006; Simon and Dufour 1998, 2005; Simon and Stahl 1998). Macroinvertebrate multihabitat samples will also be evaluated using a statewide mIBI developed for lowest practical taxonomic level identifications. Specifically, a site will be considered nonsupporting for aquatic life use when IBI or mIBI scores are less than 36. Diatom assemblages will be evaluated at each site using the appropriate IBI metrics (Jessup et al. 2021); however, the IBI score will not be used for determining aquatic life use support until an assessment methodology has undergone review in the CALM. Where biological or chemical criteria are nonsupporting for aquatic life use, the site may be considered for possible additional sampling to determine the extent, causes, and likely sources of the ALUS nonattainment area as a watershed characterization project by the Targeted Monitoring Program.

Statistical estimations of the percentage of perennial stream miles in the Upper Wabash River Basin that support or do not support aquatic life and recreational uses will be made following use-attainment decisions for each site sampled. Estimations will be calculated using the *R* statistics environment software (R Core Team 2021) package *spsurvey* available on the U.S. EPA Aquatic Resources Monitoring and Analysis webpage, http://archive.epa.gov/nheerl/arm/web/html/software.html, or at https://cran.r-project.org/web/packages/spsurvey/spsurvey.pdf (IDEM 2020b). The percent attainment and nonattainment for the target population of the Upper Wabash River Basin will be published in a table within the 2026 Integrated Report.

NOBLE MARSHALL, STARKE ALLEN FULTON JASPER ADAMS 109 BENTON 140 MADISON RANDOLPH Legend Potential Site Locations Rivers and Streams Eel (WR) Middle Wabash-Deer Mississinewa Salamonie

Figure 1. Potential Sampling Sites for the Upper Wabash River Basin.

This map is intended to serve as an aid in graphic representation only. This information is not warranted for accuracy or other purposes.

10

15

20

30

40 Miles

60 Kilometers

Mapped by: Mitchell Owens, Office of Water Quality

Date: 2/5/2024

Tippecanoe

Wildcat

Upper Wabash

County Boundaries

Spatial Data Source: State of Indiana Geographic Information Office Library

Map Projection and Datum: UTM Zone 16N/NAD83

Table 3. List of Potential Sites for the Upper Wabash River Basin.

Sir N. I	504 6175 10		3. List of Potentia					St. 61 .
Site Number	EPA SITE ID	STATION	WATERBODY	COUNTY	LATITUDE	LONGITUDE	Stream Order	Site Status
1	INRB24-001	WTI-06-0020	Tippecanoe River	Pulaski	41.07940659	-86.58289396	8	Target, Approved
2	INRB24-002	WDE-03-0002	Mitchell Creek	Carroll	40.65089021	-86.64573823	6	Other, Deadline 3/15/24
3	INRB24-003	WUW-11-0013	Flat Creek	Wells	40.88212077	-85.3135182	5	Target, Approved
4	INRB24-004	WSA-03-0009	Salamonie River	Wells	40.63414289	-85.36887183	7	Target, Approved
5	INRB24-005	WDE-01-0007	Brown Ditch	Cass	40.8322652	-86.41462121	4	Non-target, Dry
6	INRB24-006	WAW-03-0038	Tributary of Boyles Ditch	Clinton	40.36221789	-86.51658299	3	Non-target, Dry
7	INRB24-007	WSA-04-0017	Brook Creek	Huntington	40.73031419	-85.45103659	3	Non-target, Dry
8	INRB24-008	WMI-03-0017	Moore Prong	Blackford	40.4430943	-85.40803033	5	Non-target, Dry
9	INRB24-009	WTI-02-0075	Tippecanoe River	Kosciusko	41.27296509	-85.86379599	7	Target, Approved
10	INRB24-010	WUW-14-0028	Daniel Creek	Miami	40.7576647	-86.00200917	5	Non-target, Dry
11	INRB24-011	WAE-04-0012	Wheeler Creek	Wabash	41.04396062	-85.71718226	5	Target, Approved
12	INRB24-012	WMI-01-0009	Mitchell Ditch	Randolph	40.24389592	-84.80752316	3	Non-target, No stream
13	INRB24-013	WAW-02-0002	Cripe Run	Clinton	40.40866082	-86.63945337	4	Non-target, Access denied
14	INRB24-014	WDE-04-0005	Deer Creek	Miami	40.61181921	-86.10068225	6	Other, Deadline 3/15/24
15	INRB24-015	WMI-05-0030	Barren Creek	Grant	40.42757711	-85.58692097	6	Non-target, Access denied
16	INRB24-016	WSA-02-0006	Salamonie River	Blackford	40.5302868	-85.2231102	7	Other, Deadline 3/15/24
17	INRB24-017	WTI-08-0007	Little Indian Creek	Cass	40.88001226	-86.56190038	6	Target, Approved
18	INRB24-018	WDE-05-0013	Bachelor Run	Carroll	40.55520684	-86.52380793	6	Target, Approved
19	INRB24-019	WUW-14-0029	Lagro Creek	Wabash	40.88341316	-85.69280896	4	Target, Approved
20	INRB24-020	WMI-05-0026	Mississinewa River	Grant	40.55377777	-85.6483404	7	Target, Approved
21	INRB24-021	WAE-06-0005	Weesau Creek	Miami	40.91559199	-86.12698902	6	Target, Approved
22	INRB24-022	WAW-03-0042	Paris Ditch	Clinton	40.28615166	-86.27334331	3	Non-target, Dry
23	INRB24-023	WAE-04-0009	Tributary of Carroll Ditch	Huntington	40.9693739	-85.62482814	4	Non-target, Dry
24	INRB24-024	WUW-14-0030	Treaty Creek	Wabash	40.71487373	-85.69131234	3	Other, Deadline 3/15/24
25	INRB24-025	WTI-06-0021	Tippecanoe River	Fulton	41.13182785	-86.39365244	8	Target, Approved
26	INRB24-026	WUW-16-0004	Little Pipe Creek	Miami	40.69547571	-86.03157656	5	Other, Deadline 3/15/24
27	INRB24-027	WUW-10-0012	Squaw Creek	Allen	41.04465807	-85.32152872	4	Target, Approved
28	INRB24-028	WMI-02-0025	Bush Creek	Randolph	40.23451232	-85.09041712	4	Non-target, Dry
29	INRB24-029	WAW-03-0043	Lauramie Creek	Tippecanoe	40.28888665	-86.7573899	5	Target, Approved
30	INRB24-030	WDE-04-0006	Deer Creek	Howard	40.53784745	-85.96507533	5	Non-target, Dry
31	INRB24-031	WMI-04-0020	Champion Run	Delaware	40.3206171	-85.42079067	3	Non-target, Dry
32	INRB24-032	WSA-02-0007	Tributary of Slocum Ditch	Blackford	40.4895014	-85.30838418	3	Non-target, No stream
33	INRB24-033	WAE-05-0043	Silver Creek	Kosciusko	41.05192116	-85.92247469	5	Other, Deadline 3/15/24
34	INRB24-034	WAW-01-0004	Kokomo Creek	Howard	40.44771568	-86.04510363	6	Target, Approved
35	INRB24-035	WSA-04-0018	Salamonie River	Wabash	40.80438237	-85.67145501	7	Non-target, Impounded stream
36	INRB24-036	WMI-05-0031	Tributary of Lugar Creek	Grant	40.54570679	-85.61713286	3	Non-target, Dry
37	INRB24-037	WAE-06-0006	Eel River	Miami	40.8563493	-86.00320824	7	Target, Approved
38	INRB24-038	WAW-04-0007	Wildcat Creek	Carroll	40.48622979	-86.4013987	8	Target, Approved
39	INRB24-039	WAE-01-0029	Hosler Ditch	Noble	41.27465446	-85.36385992	5	Non-target, Dry
40	INRB24-040	WMI-06-0011	Grant Creek	Wabash	40.67243719	-85.72302979	5	Target, Approved
41	INRB24-041	WAE-04-0010	Tributary of Clear Creek	Kosciusko	41.05044126	-85.86354319	4	Non-target, Access denied
42	INRB24-041	WDE-05-0012	Price Plank Ditch	Carroll	40.62231731	-86.38852688	3	Non-target, No stream
43	INRB24-042	WAE-03-0012	Tributary of Sattison Ditch	Whitley	41.20893317	-85.57931622	3	Non-target, No stream
44	INRB24-043	WMI-02-0027	Tributary of Halfway Creek	Jay	40.35993597	-85.15713645	4	Non-target, No stream
45	INRB24-045	WDE-01-0008	Galbreath Ditch	Cass	40.79621826	-86.56208259	1	Non-target, Dry
46					40.72034004		4	
47	INRB24-046 INRB24-047	WDE-01-0009 WAW-01-0008	Tributary of Wabash River	Cass	40.40773893	-86.39821834 -85.77701143	2	Target, Approved
	_		Grassy Fork Bear Creek	Grant			5	Non-target, Dry
<u>48</u> 49	INRB24-048	WUW-04-0006		Jay	40.5133258	-84.97206772	6	Target, Approved
	INRB24-049	WTI-08-0008	Grassy Creek	Fulton	40.93264807	-86.39275503	3	Other, Deadline 3/15/24
50	INRB24-050	WAW-04-0008	William Vogus Ditch	Howard	40.42259628	-86.23894521	[3	Non-target, Dry

Table 3 (continued). List of Potential Sites for the Upper Wabash River Basin.

Cita Number	EDA CITE ID	CTATION	,	COLINTY	LATITUDE	LONGITUDE	Ctroom Ordor	Cita Ctatus
Site Number 51	EPA SITE ID INRB24-051	STATION WSA-04-0019	WATERBODY Majenica Creek	COUNTY Huntington	40.76817493	-85.53934509	Stream Order	Site Status Target, Approved
52	INRB24-051	WMI-05-0027		Grant	40.76817493	-85.61432999	2	Non-target, Access denied
53	INRB24-052	WUW-14-0031	Tributary of Mississinewa River Daniel Creek	Miami	40.32273303	-85.98338262	5	
54	INRB24-053	WAW-02-0004		Clinton	40.42866297	-86.44528883	2	Non-target, Dry
	INRB24-054	WAE-01-0028	Tributary of Middle Fork Wildcat Creek Thorn Creek	Whitley	41.22232923	-85.43025547	5	Non-target, Dry
55 56			Jordon Creek	Jay		-84.82755666	3	Other, Deadline 3/15/24
57	INRB24-056	WMI-01-0010			40.32279955		5	Non-target, Dry
	INRB24-057	WAW-04-0006	Tributary of Wildcat Creek	Tippecanoe	40.454443	-86.77071661		Target, Approved
58	INRB24-058	WDE-04-0007	South Fork Deer Creek	Cass	40.60210101	-86.22604132	6	Target, Approved
59	INRB24-059	WUW-08-0007	Wabash River	Wells	40.76249821	-85.18918543	/	Target, Approved
60	INRB24-060	WMI-02-0026	Halfway Creek	Jay	40.33797202	-85.15261606	4	Target, Approved
61	INRB24-061	WDE-03-0003	Tributary of Rattlesnake Creek	Carroll	40.68381744	-86.63240877	5	Non-target, Access denied
62	INRB24-062	WUW-12-0003	Clear Creek	Huntington	40.96154979	-85.51978987	7	Target, Approved
63	INRB24-063	WAW-01-0005	Wildcat Creek	Madison	40.37640614	-85.76518664	3	Non-target, No stream
64	INRB24-064	WSA-01-0017	Sycamore Fork	Jay	40.40897054	-84.87878182	3	Non-target, Dry
65	INRB24-065	WAE-07-0006	East Branch Twelve Mile Creek	Cass	40.8493066	-86.18412265	6	Target, Approved
66	INRB24-066	WAW-03-0039	Tributary of Kilmore Creek	Clinton	40.36283952	-86.37053591	3	Non-target, Dry
67	INRB24-067	WAE-04-0011	Tributary of Eel River	Wabash	41.0066998	-85.72706465	3	Non-target, Dry
68	INRB24-068	WUW-14-0032	Mill Creek	Wabash	40.74074231	-85.87557565	4	Target, Approved
69	INRB24-069	WAW-02-0003	Hog Run	Clinton	40.37742925	-86.6841467	5	Target, Approved
70	INRB24-070	WDE-04-0008	South Fork Deer Creek	Miami	40.57389954	-86.15955527	5	Other, Deadline 3/15/24
71	INRB24-071	WMI-05-0028	Hopcus Run	Grant	40.40244505	-85.6022893	4	Non-target, Dry
72	INRB24-072	WSA-02-0008	Jones Ditch	Blackford	40.51471534	-85.22222328	5	Non-target, Dry
73	INRB24-073	WAE-06-0007	Tributary of Eel River	Miami	40.85647495	-86.11218832	3	Non-target, Dry
74	INRB24-074	WAW-03-0040	Talbert Ditch	Clinton	40.29596261	-86.39861399	5	Target, Approved
75	INRB24-075	WAE-05-0040	Beargrass Creek	Wabash	40.93428789	-85.7157463	4	Non-target, Dry
76	INRB24-076	WMI-06-0010	Cart Creek	Wabash	40.66129546	-85.77999586	5	Non-target, Impounded stream
77	INRB24-077	WAW-03-0041	Spring Creek	Clinton	40.30061184	-86.62062243	5	Other, Deadline 3/15/24
78	INRB24-078	WDE-01-0010	Busard Ditch	Cass	40.80360717	-86.46494507	4	Non-target, Dry
79	INRB24-079	WAW-01-0009	Roberts Ditch	Howard	40.46312117	-85.89764564	5	Non-target, Dry
80	INRB24-080	WMI-03-0018	Little Lick Creek	Blackford	40.45490428	-85.34169959	5	Other, Deadline 3/15/24
81	INRB24-081	WAE-05-0041	Aberger Ditch	Miami	40.95687967	-86.01072835	4	Target, Approved
82	INRB24-082	WAW-01-0010	Kokomo Creek	Howard	40.42164737	-86.00123122	5	Other, Deadline 3/15/24
83	INRB24-083	WUW-13-0015	Loon Creek	Huntington	40.84983075	-85.58110092	5	Target, Approved
84	INRB24-084	WSA-03-0010	Prairie Creek	Blackford	40.55355085	-85.38121775	6	Non-target, Access denied
85	INRB24-085	WAE-05-0042	Bachelor Creek	Wabash	40.85922676	-85.88937122	5	Other, Deadline 3/15/24
86	INRB24-086	WAW-04-0009	Wildcat Creek	Howard	40.47076103	-86.24190127	8	Other, Deadline 3/15/24
87	INRB24-087	WAE-01-0030	Tributary of Blue River	Noble	41.28286502	-85.34409572	3	Non-target, Dry
88	INRB24-088	WSA-01-0018	Tributary of Butternut Creek	Jay	40.35271334	-84.98192962	3	Non-target, Dry
89	INRB24-089	WTI-04-0028	Tributary of Outlet Creek	Marshall	41.21801083	-86.13894129	3	Non-target, Dry
90	INRB24-090	WDE-02-0005	Ansberry Bird Ditch	Cass	40.63135161	-86.29555776	3	Non-target, Dry
91	INRB24-091	WTI-02-0076	Deeds Creek	Kosciusko	41.18689696	-85.68976694	5	Non-target, Dry
92	INRB24-092	WMI-04-0021	Tributary of Rees Creek	Delaware	40.33985994	-85.33948528	3	Target, Approved
93	INRB24-093	WTI-13-0007	Tippecanoe River	Carroll	40.7360937	-86.75011132	8	Non-target, Impounded stream
94	INRB24-093	WUW-15-0013	Little Deer Creek	Cass	40.71283615	-86.20529773	5	Target, Approved
95	INRB24-095	WAW-01-0006	Tributary of Grassy Fork	Grant	40.41350866	-85.75530894	3	Non-target, No stream
96	INRB24-095	WUW-04-0007		Jay	40.41330866	-84.86390251	5	
96			West Prong Franks Drain Tributary of Gault Ditch		40.47170536		4	Non-target, Dry
	INRB24-097	WTI-08-0009	,	Cass		-86.33216603	•	Non-target, No stream
98	INRB24-098	WAW-01-0007	Tributary of Finn Ditch	Howard	40.40698645	-86.05637301	5	Non-target, Dry
99	INRB24-099	WSA-04-0020	Salamonie River	Huntington	40.74403345	-85.52647941	7	Target, Approved
100	INRB24-100	WMI-05-0029	Octain Creek	Grant	40.46314165	-85.59547117	3	Non-target, Dry

Table 3 (continued). List of Potential Sites for the Upper Wabash River Basin.

Site Number	EPA SITE ID	STATION	WATERBODY	COUNTY	LATITUDE	LONGITUDE	Stream Order	Site Status
101	INRB24-101	WTI-05-0027	Minnow Ditch	Fulton	41.07327007	-86.22747485	3	Target, Approved
102	INRB24-102	WAW-02-0005	Middle Fork Wildcat Creek	Carroll	40.44311299	-86.50286616	4	Target, Approved
103	INRB24-103	WAE-04-0013	Tributary of Mishler Ditch	Kosciusko	41.1248117	-85.73956396	6	Other, Deadline 3/15/24
104	INRB24-104	WMI-02-0028	Flesher Creek	Jay	40.31995608	-85.0633515	4	Non-target, Dry
105	INRB24-105	WAW-04-0010	Wildcat Creek	Tippecanoe	40.43143338	-86.81509036	5	Target, Approved
106	INRB24-106	WDE-05-0014	Tributary of Bachelor Creek	Carroll	40.56446799	-86.51111142	8	Non-target, Dry
107	INRB24-107	WUW-09-0008	Tributary of Big Creek	Wells	40.91791661	-85.28802733	4	Target, Approved
108	INRB24-108	WMI-02-0029	Sharp Ditch	Delaware	40.2890112	-85.22341435	5	Target, Approved
109	INRB24-109	WTI-13-0008	Tributary of Big Creek	White	40.65090807	-86.79816643	7	Non-target, No stream
110	INRB24-110	WUW-09-0009	Mill Creek	Allen	40.93904729	-85.32060749	4	Other, Deadline 3/15/24
111	INRB24-111	WSA-04-0024	Tributary of Wabash River	Huntington	40.70388737	-85.56885128	4	Target, Approved
112	INRB24-112	WUW-01-0001	Tributary of Eel River	Jay	40.39852649	-84.81072893	5	Target, Approved
113	INRB24-113	WTI-10-0014	Broad Creek	White	40.86792868	-86.77891877	5	Target, Approved
114	INRB24-114	WTI-13-0009	Gukien Cohee Ditch	White	40.6030118	-86.79235206	7	Other, Deadline 3/15/24
115	INRB24-115	WAE-05-0045	Sharp Ditch	Wabash	40.8568828	-85.7995342	6	Non-target, Dry
116	INRB24-116	WSA-03-0011	Enoch Lee Ditch	Grant	40.6070604	-85.4693999	4	Non-target, Dry
117	INRB24-117	WAE-07-0007	Dry Run Ditch	Cass	40.81570263	-86.25242192	5	Target, Approved
118	INRB24-118	WAW-03-0044	Tributary of Prairie Creek	Clinton	40.3031901	-86.50410959	4	Other, Deadline 3/15/24
119	INRB24-119	WAE-04-0016	Simonton Creek	Whitley	41.00488043	-85.68138437	5	Target, Approved
120	INRB24-120	WUW-14-0033	Mill Creek	Wabash	40.7211345	-85.8694263	5	Non-target, No stream
121	INRB24-121	WTI-03-0021	Tippecanoe River	Kosciusko	41.24677822	-85.9122238	4	Target, Approved
122	INRB24-122	WUW-16-0005	Tributary of Wabash River	Miami	40.73393339	-86.03147851	8	Target, Approved
123	INRB24-123	WAE-04-0014	Hurricane Creek	Whitley	41.05855193	-85.6611046	4	Other, Deadline 3/15/24
124	INRB24-124	WMI-04-0022	Mississinewa River	Delaware	40.27419314	-85.29531239	5	Target, Approved
125	INRB24-125	WAW-03-0045	Kilmore Creek	Clinton	40.33937327	-86.59889164	7	Other, Deadline 3/15/24
126	INRB24-126	WUW-15-0016	Sugar Creek	Miami	40.58437171	-85.9395626	4	Target, Approved
127	INRB24-127	WMI-05-0032	Hoppas Ditch	Grant	40.3918099	-85.50502902	5	Other, Deadline 3/15/24
128	INRB24-128	WSA-02-0009	Salamonie River	Blackford	40.5244338	-85.20580554	5	Target, Approved
129	INRB24-129	WTI-10-0015	Big Monon Ditch	Pulaski	41.07750917	-86.79725095	7	Target, Approved
130	INRB24-130	WTI-12-0009	Tributary of Winters Ditch	White	40.76968447	-87.06007974	7	Non-target, No stream
131	INRB24-131	WUW-13-0016	Tributary of Wabash River	Huntington	40.82905616	-85.61660386	4	Non-target, Dry
132	INRB24-132	WUW-15-0014	Pipe Creek	Grant	40.53370747	-85.73936789	3	Target, Approved
133	INRB24-133	WAE-06-0008	Tributary of Eel River	Miami	40.8563305	-86.1049008	6	Non-target, Dry
134	INRB24-134	WAW-01-0011	Broad Creek	Tipton	40.31466647	-86.17536935	3	Non-target, Dry
135	INRB24-135	WUW-13-0017	Silver Creek	Huntington	40.88843523	-85.606071	3	Target, Approved
136	INRB24-136	WMI-06-0012	Tenmile Creek	Wabash	40.65588544	-85.84544243	5	Non-target, Impounded stream
137	INRB24-137	WTI-05-0028	Minnow Ditch	Fulton	41.08175381	-86.23153496	6	Non-target, Access denied
138	INRB24-138	WDE-05-0015	Gukien Cohee Ditch	Carroll	40.63035775	-86.42162003	4	Non-target, Dry
139	INRB24-139	WTI-02-0090	Tippecanoe River	Kosciusko	41.30484562	-85.81642137	3	Target, Approved
140	INRB24-140	WMI-01-0011	Little Ditch	Randolph	40.17969296	-84.83817627	7	Non-target, No stream
141	INRB24-141	WTI-12-0010	Church Creek	White	40.81728107	-86.72122447	3	Non-target, Dry
142	INRB24-142	WDE-01-0011	Goose Creek	Cass	40.73594995	-86.36462397	4	Non-target, Dry
143	INRB24-143	WAW-01-0012	Wildcat Creek	Grant	40.41491381	-85.85834356	5	Target, Approved
144	INRB24-144	WSA-02-0010	Twomile Ditch	Jay	40.48500458	-85.19087295	6	Target, Approved
145	INRB24-145	WAE-07-0008	Bower Ditch	Miami	40.8468567	-86.16598267	6	Non-target, Dry
146	INRB24-146	WAW-04-0011	Tributary of Wildcat Creek	Howard	40.45970886	-86.31838341	5	Target, Approved
147	INRB24-147	WAE-01-0031	Blue River	Whitley	41.24829111	-85.37182147	4	Target, Approved
148	INRB24-147	WSA-01-0031	Walnut Creek	Jay	40.38138393	-84.87950769	6	Target, Approved
149	INRB24-148	WDE-01-0019	Tributary of Crooked Creek	Cass	40.73037388	-86.51886117	5	Target, Approved
150	INRB24-149	WDE-01-0012 WDE-02-0008	Dry Run Ditch	Cass	40.6675644	-86.20964457	5	Non-target, Dry
TJU	IIVD24-13U	VV DE-02-0008	יוטן אמוז טונטון איז א איז איז איז איז איז איז איז איז א	cass	140.0073044	-00.20304437	ر	Non-talget, DIY

A.4.6. Specify Performance or Acceptance Criteria

Good quality data are essential for minimizing decision error. By identifying errors in the sampling design, measurement, and laboratory for physical, chemical, and biological parameters, more confidence can be placed in the percentage of perennial stream miles in the river basin that support or do not support aquatic life and recreational uses. In this project, it is desired to make decisions protective of human health and the environment; therefore, the null hypothesis is that the reach is not supportive of Indiana's aquatic life and recreational uses. The resulting Type 1 and Type 2 decision errors in this project are listed in Table 4 below.

Table 4. Decision Error Associated with Probabilistic Monitoring.

	Actual Status of Sampled Stream Reaches of the Studied Watershed				
WAPB Work Plan Findings	Stream reach <u>IS</u> supportive Stream reach <u>IS NOT</u> supp of aquatic life and recreational use recreational use				
Stream reach <u>IS</u> supportive of aquatic life and recreational use	Stream reach is correctly identified as supporting aquatic life and recreational use	Decision Error (Type 1)			
Stream reach IS NOT supportive of aquatic life and recreational use	Decision Error (Type 2)	Stream reach is correctly identified a NOT supporting aquatic life and recreational use			

The probabilistic sampling design provides estimations of the proportion of streams in the basin attaining designated uses with a 95% confidence level. A minimum of 38 probabilistic sites will be sampled in the basin to assure this confidence level is reached for overall stream mileage estimations (see Sampling Design and Site Locations, page 19).

Site specific aquatic life use and recreational use assessments include program specific controls to identify the introduction of errors. These controls include water chemistry and bacteriological blanks and duplicates, biological site revisits or duplicates, and laboratory controls through verification of species identifications as described in IDEM QAPPs and SOPs (IDEM 2020a, 2020c, 2020d, 2023a, 2023b, 2023c, 2023e, 2023f, 2023g, 2023h, 2023i).

The QA/QC process detects deficiencies in the data collection as set forth in the QAPP (IDEM 2023a, 2020a). The QAPP requires all contract laboratories to adhere to rigorous standards during sample analyses and to provide good quality usable data. Chemists within the WAPB provide a QA review of the laboratory analytical results. Any data which is "Rejected" due to analytical problems or errors will not be used for water

quality assessment decisions. Any data flagged as "Estimated" may be used on a case-by-case basis and is noted in the QA/QC report. Criteria for acceptance or rejection of results as well as application of data quality flags is presented in the Surface Water QAPP, Table 28: Data Flags, page 106 (IDEM 2023a) and Biological and Habitat QAPP, pages 32-36 (IDEM 2020a). Precision and accuracy goals with acceptance limits for applicable analytical methods are provided in the Surface Water QAPP, Table 3: Performance, Acceptance, and Decision Criteria for this Study, page 37; and Table 14: Field Parameters, page 92 (IDEM 2023a). Further investigation will be conducted in response to consistent "rejected" data in determining the source of error. Field techniques used during sample collection and preparation, along with laboratory procedures will be subject to evaluation by both the WAPB QA manager and project manager in troubleshooting error introduced throughout the entire data collection process. Corrective actions will be implemented once the source of error is determined per the QAPP (IDEM 2023a, IDEM 2020a).

If funding and resources are available, results showing nonsupport for aquatic life use will be subsequently verified through a targeted monitoring program prior to completion of the Integrated Report. Those stream reaches showing nonsupport may also be verified through the TMDL development process.

A.4.7. Develop the Plan for Obtaining Data

The probabilistic rotating basin design is optimal for assessing the recreational use and ALUS status of river and stream resources in Indiana. The design facilitates statistically valid estimations of the total percent of perennial stream miles within the basin of interest that are nonsupporting for aquatic life and recreational uses. The estimations are derived from total perennial stream miles in the basin of interest and the design requires minimal use of sampling and staff resources (see Sampling Design and Site Locations, page 19).

A.5. Training and Staffing Requirements

Table 5. Project Roles, Experience, and Training

Role	Required Training/Experience	Responsibilities	Training References
Project manager	-Database experience -Experience in project management and QA/QC procedures	-Establish project in the Assessment Information Management System (AIMS) II database -Oversee development of project work plan -Oversee entry and QC of field data -Querying data from AIMS II to determine results not meeting water quality criteria	-AIMS II Database User Guide -IDEM 2020a, 2020b, 2022b, 2023a, 2023k -U.S. EPA 2002, 2006

Dala	Degrained	Deemoneihilities	March 31, 2024
Role	Required Training/Experience	Responsibilities	Training References
	Training/Exponence	-Calculating predicted percentage of perennial stream miles nonsupporting for aquatic life uses and recreational uses in the river basin of interest	No. or
Field crew chief macroinvertebrate and fish community sampling	-At least one year of experience in sampling methodology and taxonomy of aquatic communities in the region -Annually review the principles and techniques of electrofishing -Annually review relevant safety procedures -Annually review relevant SOP documents for field operations	-Complete field data sheets -Taxonomic accuracy -Sampling efficiency and representation -Voucher specimen tracking -Overall operation of the field crew -Adherence to safety and field SOP procedures by crew members -Ensure that multiprobe analyzers are calibrated weekly prior to field sampling activities -Ensure that field sampling equipment is functioning properly and loaded into field vehicles prior to field sampling activities	-Dufour 2002 -IDEM 2008, 2010a, 2010b, 2019, 2020a, 2020c, 2020d, 2021b, 2022a, 2023d, 2023e, 2023g -Simon 2006 -Simon and Dufour 1998, 2005 -Simon and Stahl 1998 -YSI 2017, 2018
Field crew members – macroinvertebrate and fish community sampling	-Complete hands-on training for sampling methodology prior to participation in field sampling activities -Review the principles and techniques of electrofishing -Review relevant safety procedures -Review relevant SOP documents for field operations	-Follow all safety and SOP procedures while engaged in field sampling activities -Follow direction of field crew chief while engaged in field sampling activities	-IDEM 2008, 2010a, 2010b, 2019, 2020c, 2020d, 2021b, 2022a, 2023c, 2023d, 2023e, 2023g -YSI 2017, 2018
Field crew chief – water chemistry, algal, and/or bacteriological sampling	-At least one year of experience in sampling methodology -Annually review relevant safety procedures -Annually review relevant SOP documents for field operations	-Completion of field data sheets -Sampling efficiency and representation -Overall operation of the field crew -Adherence to safety and field SOP procedures by crew members -Ensure that multiprobe analyzers are calibrated	-IDEM 2008, 2010a, 2010b, 2019, 2020a, 2020c, 2020d, 2021b, 2022a, 2022b, 2023b, 2023d, 2023f, 2023h -YSI 2017, 2018

Role Required		Responsibilities	March 31, 2024 Training
11010	Training/Experience	Тоороновино	References
		weekly prior to field sampling activities -Ensure that field sampling equipment is functioning properly and loaded into field vehicles prior to field sampling activities	
Field crew members – water chemistry, algal, and/or bacteriological sampling	-Complete hands-on training for sampling methodology prior to participation in field sampling activities -Review relevant safety procedures -Review relevant SOP documents for field operations	-Follow all safety and SOP procedures while engaged in field sampling activities -Follow direction of field crew chief while engaged in field sampling activities	-IDEM 2008, 2010a, 2010b, 2019, 2020c, 2020d, 2021b, 2022a, 2023b, 2023d, 2023f, 2023h -YSI 2017, 2018
Laboratory supervisor – macroinvertebrate and fish community sample processing	-At least one year of experience in taxonomy of aquatic communities in the region -Annually review relevant safety procedures -Annually review relevant SOP documents for laboratory operations	-Identification of fish and macroinvertebrate specimens collected during field sampling -Completion of laboratory data sheets -Verify taxonomic accuracy of processed samples -Voucher specimen tracking -Adherence to safety and SOP procedures by laboratory staff -Check data for completeness -Perform all necessary calculations on the data -Ensure that data are entered into the AIMS II Database -Ensure that required QA/QC are performed on the data -Querying data from AIMS II to determine results not meeting Water Quality Criteria	-IDEM 2008, 2010a, 2010b, 2019, 2020a, 2021b, 2023i -AIMS II Database User Guide
Laboratory staff – macroinvertebrate and fish community sample processing	-Complete hands-on training for laboratory sample processing methodology prior to participation in laboratory sample processing activities -Annually review relevant safety procedures	-Adhere to safety and SOP procedures -Follow Laboratory Supervisor direction while processing samples -Identification of fish and macroinvertebrate specimens collected during field sampling	-IDEM 2008, 2010a, 2010b, 2019, 2021b, 2023i -AIMS II Database User Guide

Role	Required	Responsibilities	Training
110.0	Training/Experience		References
	-Annually review relevant SOP documents for laboratory operations	-Completion of laboratory data sheets, perform necessary calculations on data, enter field sheets	
Laboratory supervisor – water chemistry, algal and/or bacteriological sample processing	-Annually review relevant safety procedures -Annually review relevant SOP documents for field operations	-Completion of laboratory data sheets -Adherence to safety and SOP procedures by laboratory staff -Check data for completeness -Perform all necessary calculations on the data -Ensure that data are entered into the AIMS Data Base -Ensure that required QA/QC are performed on the data -Querying data from AIMS II to determine results not meeting Water Quality Criteria	-IDEM 2008, 2010a, 2010b, 2023a, 2019, 2020a, 2021b, 2023f, 2023h -AIMS II Database User Guide
Quality assurance officer	-Familiarity with QA/QC practices and methodologies -Familiarity with the QAPPs and data qualification methodologies	-Ensure adherence to QA/QC requirements of QAPP -Evaluate data collected by sampling crews for adherence to project work plan -Review data collected by field sampling crews for completeness and accuracy -Perform a data quality analysis of data generated by the project -Assign data quality levels based on the data quality analysis -Import data into the AIMS data base -Ensure that field sampling methodology audits are completed according to WAPB procedures	-IDEM 2020a, 2021a, 2022b, 2023b, 2023a, 2023k -U.S. EPA 2002, 2006 -AIMS II Database User Guide

B. Measurement and Data Acquisition

B.1. Sampling Design and Site Locations

Sites are generated by the U.S. EPA, NHEERL, Western Ecology Division, in Corvallis, Oregon using Environmental Monitoring Assessment Program selection methods. The Environmental Monitoring Assessment Program design uses a statistically valid number of randomly selected sites to assess and characterize the overall water quality and biotic integrity of the basin of study. To statistically estimate the percent of the basin attaining designated uses with a 95% confidence level, a minimum of 38 probabilistic sites will be sampled in the basin of interest. This minimum required number of sites was determined by analyzing IDEM fish community IBI metric scores from 317 sites sampled from 1996–2000 with the following formula:

$$n = \frac{s^2}{(p)^2(\bar{x})^2}$$

where n is the number of sites required, s is the sample standard deviation (10.98922), \overline{x} is the sample mean (35.52366), and p is the p-value (set at 0.05 for a 95% confidence level) (Elliott 1983). A sample size of 38 was thereby determined to be sufficient to arrive at the "true" average IBI score for a basin 95% of the time. This sample size was also found to be sufficient to provide 80% estimations for eight of the more frequently used individual metrics used in the calculation of the fish community IBI.

Site selection is stratified to ensure effort is equally distributed between stream orders for equal representation of the various stream sizes within the basin. IDEM's site selection process incorporates a stratified random probability design in order to select an approximately equal number of 1st, 2nd, 3rd, and 4th order and higher streams in the basin. Utilizing the stratification method ensures that a greater number of sampling sites on lesser order streams are not chosen based on proportion of stream miles. An overdraw of sampling sites is requested to compensate for denial of access, dry stream conditions, and sites presenting extremely difficult or unsafe access.

Site reconnaissance activities will be conducted in-house and through physical site visits (IDEM 2023j). In-house activities will include preparation and review of site maps and aerial photographs; initial evaluation of target or nontarget site status; potential access routes; and initial property owner searches. Physical site visits will include property owner consultations; verification of site status (target or nontarget); confirmation and documentation of access routes; and determination of equipment needed to properly sample the site. Precise coordinates for each approved target site will be determined using an agency approved handheld Global Positioning System (GPS) unit which can verify horizontal precision of five meters or less (2023d). At least 100 potential sites are to be visited at least once during site reconnaissance to determine target or nontarget status (marsh, dry, backwater, etc.). However, landowner permission and site access will only be determined for the first 75 potential sites (or until at least 50 target sites have been confirmed), with the remaining sites noted only as "Target" or "NonTarget". After each site has been visited once, and at least 45 sites have been approved

in the basin of interest, field work for site reconnaissance activities should be minimal. Although 12 weeks is the maximum time allotted for site reconnaissance field work (see A. Project Management, A.4 Data Quality Objectives), most work can be completed in a six-week period depending upon weather, drive time to sites, and other unforeseeable constraints. The remaining work, if possible, can be done in the office with phone calls to seek landowner permission. If permission to visit a site is then granted before the 12-week deadline, a daytrip or overnight may be needed to determine access routes, equipment, and more accurate GPS coordinates. Once the deadline is reached, those sites that were not accessible through bridge right-of-way, yet appeared to be "target" from the nearest bridge, will be entered into the database with the Reconnaissance Decision as "No, Other" with the following text in the Comments field "Unable to contact landowner by deadline" along with the date and initials of the person entering the data and writing it on the IDEM Site Reconnaissance Form (Attachment 1).

Table 3 lists the potential sampling sites generated by U.S. EPA Corvallis for the Upper Wabash River Basin. Target sampling sites will be taken in sequential order as shown in Table 3 until the 45 sites are sampled for algal community and water chemistry, 40 sites for bacteriological sampling, and 38 sites for biological sampling programs. If a site is considered "nontarget" (dry, backwater, marsh/wetland, etc.) or unavailable to sample for some other reason (physical barrier, landowner denial, etc.), the next target site on the list will be taken. Figure 1 depicts potential sampling sites generated by U.S. EPA Corvallis for this project and their approximate locations.

B.2. Sampling Methods and Sample Handling

B.2.1. Bacteriological Sampling

The bacteriological sampling will be conducted by one or two teams consisting of two staff (IDEM 2023b). The work effort will require an average of one hour per site per week. Samples will be processed in the IDEM Fixed and/or Mobile E. coli Laboratory (van) equipped with all materials and equipment necessary for the Standard Method (SM) 9223B Colilert® E. coli Test Method near the sampling sites. Five samples from each site (40 sites total) will be collected at equally spaced intervals over a thirty calendar-day period. Staff will collect the samples in a 120 mL presterilized wide mouth container from the center of flow (if the stream is wadeable) or from the shoreline using a pole sampler (if the stream is not wadeable). This is subject to field staff determination based on available Personal Protective Equipment (PPE), turbidity, and other factors. However, streams waist deep or shallower are generally considered wadeable. All samples will be consistently labeled, cooled, and held at a temperature less than 10°C during transport. All E. coli samples will be collected on a schedule such that any sampling crew can deliver them to the IDEM Fixed or Mobile E. coli Laboratory for analyses within the bacteriological holding time of six hours.

The IDEM *E. coli* Mobile Laboratory is used in this project to facilitate *E. coli* testing by eliminating the necessity of transporting samples to distant contract laboratories within a six-hour holding time. The *E. coli* Mobile Laboratory provides workspace containing storage for samples, supplies for Colilert® Quanti-tray testing, and all equipment needed for collecting, preparing, incubating, and analyzing results. All supplies will be obtained from IDEXX Laboratories, Inc., Westbrook, Maine.

B.2.2. Water Chemistry Sampling

During three discrete sampling events, one team of two staff will collect grab water chemistry samples, and record water chemistry field measurements and physical site descriptions on the IDEM Stream Sampling Field Data Sheet (Attachment 2). All water chemistry sampling will adhere to the Water Chemistry Field Sampling Procedures (IDEM 2020c). Water chemistry sampling usually takes 30 minutes to complete for each site, depending on accessibility.

B.2.3. Algal Sampling

In addition to standard water chemistry sampling, one team of two staff will collect attached periphyton samples (IDEM 2023f) at all sites during the third round of water chemistry sampling in September or October (Table 1) for the purposes of diatom community enumeration, identification, and subsequent diatom IBI calculation.

Sampling for an average site that includes all of the above parameters will require approximately 1.5 hours of effort. The Algal Biomass Lab Datasheet (Attachment 3) will be used to record information regarding substrates sampled for periphyton and physical parameters of the stream sampling area. See IDEM 2023f for a description of methods used in algal community sampling.

Periphyton samples are processed in the IDEM laboratory to create permanent diatom slide mounts. See IDEM 2023h for a description of methods used in preparing samples for diatom identification and enumeration.

B.2.4. Fish Community Sampling

Fish community sampling will be performed using various standardized electrofishing methodologies depending on stream size and site accessibility. Fish assemblage assessments will be performed in a sampling reach of 15 times the average wetted width, with a minimum reach of 50 meters and a maximum reach of 500 meters (IDEM 2023c). An attempt will be made to sample all habitat types available (i.e., pools, shallows; see IDEM 2023g, pg. 10–11, for more potential habitat types) within the sample reach to ensure adequate representation of the fish community present at the time of the sampling event. The possible list of electrofishers to be utilized include: the Midwest Lake Electrofishing Systems (MLES) Infinity XStream, Smith-Root LR-24 or LR-20B Series

backpack electrofishers; or MLES Infinity Control Box with MLES junction box and rat-tail cathode cable, assembled in a canoe. If parts of the stream are not wadeable, the system may require the use of a dropper boom array outfitted in a canoe or possibly a 12- or 14-foot Loweline boat. For nonwadeable sites, the Smith-Root Type VI-A electrofisher or MLES Infinity Control Box assembled in a 16-foot Loweline or Blazer boat (IDEM 2023c) may be used.

Sample collections during high flow or turbid conditions will be avoided due to 1) low collection rates which result in nonrepresentative samples and 2) safety considerations for the sampling team. Sample collection during late autumn will be avoided due to the cooling of water temperature, which may affect the responsiveness of some species to the generated electric field. This lack of responsiveness can result in samples that are not representative of the stream's fish assemblage (IDEM 2023c).

Fish will be collected using dipnets with fiberglass handles and netting of 1/8-inch bag mesh. Fish collected in the sampling reach will be sorted by species into baskets or buckets. Young-of-the-year fish less than 20 millimeters (mm) total length will not be retained in the community sample (IDEM 2023c).

For each field taxonomist, generally the crew leader, a complete set of fish vouchers are retained for any different species encountered during the summer sampling season. Vouchers may consist of either preserved specimens or digital images. Prior to processing fish specimens and completion of the fish community datasheet, one to two individuals per new species encountered may be preserved in 3.7% formaldehyde solution to serve as representative fish vouchers if the fish specimens can be positively identified and the individuals for preservation are small enough to fit in a 2000 mL jar. If, however, the specimens are too large to preserve, a photo of key characteristics, like fin shape, size, or body coloration, will be taken for later examination (IDEM 2023c). Also, prior to sampling, 10% of the sites will be randomly selected for revisiting and a few representative individuals of all species found at the site will be preserved or photographed to serve as vouchers (IDEM 2020a). Taxonomic characteristics for possible species encountered in the basin of interest will be reviewed prior to field work. Fish specimens should also be preserved if they cannot be positively identified in the field, those that cooccur like the Striped and Common Shiners, and those that are difficult to identify when immature. Additionally, individuals appearing to be hybrids, have unusual anomalies, dead specimens that are taxonomically valuable for undescribed taxa like the Red Shiner or Jade Darter, life history studies, or research projects (IDEM 2023c) should also be preserved.

Data will be recorded for nonpreserved fish on the IDEM Fish Collection Data Sheet (Attachment 4) consisting of the following: number of

individuals, minimum and maximum total length (mm), mass weight in grams (g), and number of individuals with deformities, eroded fins, lesions, tumors, and other anomalies (DELTs). Once the data have been recorded, specimens will be released within the sampling reach from which they were collected. Data will be recorded for preserved fish specimens following taxonomic identification in the laboratory (IDEM 2023c).

B.2.5. Macroinvertebrate Sampling

Aquatic benthic macroinvertebrate samples are collected using a modification of the U.S. EPA Rapid Bioassessment Protocol multihabitat (MHAB) approach using a D-frame dip net (Plafkin et al. 1989; Barbour et al. 1999; Klemm et al. 1990; IDEM 2023e). The IDEM MHAB approach (IDEM 2023e) is composed of a 1-minute "kick" sample within a riffle or run. A kick sample is collected by disturbing one square meter of stream bottom substrate in a riffle or run habitat and collecting the dislodged macroinvertebrates within the dipnet. A 50-meter "sweep" sample of additional instream habitats is collected by disturbing habitats such as emergent vegetation, root wads, coarse particulate organic matter, depositional zones, logs, and sticks; and collecting the dislodged macroinvertebrates within the dipnet. The 50-meter length of riparian corridor that is sampled at each site will be defined using a tape measure or rangefinder. If the stream is too deep to wade, a boat will be used to sample the 50-meter zone along the shoreline that has the best available habitat. The 1-minute "kick" (if collected) and 50-meter "sweep" samples are combined in a bucket of water. The sample will be elutriated through a U.S. standard number 35 (500 µm) sieve a minimum of five times so that all rocks, gravel, sand, and large pieces of organic debris are removed from the sample. The remaining sample is then transferred from the sieve to a white plastic tray. The collector (while still onsite) will conduct a 15minute pick of macroinvertebrates at a single organism rate with an effort to pick for maximum organism diversity and relative abundance through turning and examination of the entire sample in the tray. The resulting picked sample will be preserved in 80% isopropyl alcohol; returned to the laboratory for identification at the lowest practical taxonomic level, usually genus or species level, when possible; and evaluated using the MHAB macroinvertebrate IBI (IDEM 2023i).

B.2.6. Habitat Assessments

Habitat assessments will be completed immediately following macroinvertebrate and fish community sample collections at each site using a slightly modified version of the Ohio Environmental Protection Agency (OHEPA) Procedures for Completing the QHEI, 2006 edition (OHEPA 2006). A separate QHEI (Attachment 5) must be completed for these two sample types since the sampling reach length may differ. A sample reach length is 50 meters for macroinvertebrates and between 50

to 500 meters for fish. See IDEM 2023g for a description of the method used in completing the QHEI.

B.2.7. Field Parameter Measurements

Dissolved oxygen, pH, water temperature, specific conductance, and dissolved oxygen percent saturation will be measured with a data sonde during each sampling event, regardless of the sample type being collected. Measurement procedures and operation of the data sonde shall be performed according to the manufacturers' manuals (IDEM 2023?). Turbidity will be measured with a Hach turbidity kit, and the meter number written in the comments under the field parameter measurements (IDEM 2020c). If a Hach turbidity kit is not available, the data sonde measurement for turbidity will be recorded and noted in the comments. All field parameter measurements and weather codes will be recorded on the IDEM Stream Sampling Field Data Sheet (Attachment 2) with other sampling observations. A digital photo will also be taken upstream and downstream of the site during each sampling event.

B.3. Analytical Methods

Table 6 lists the *E. coli* bacteriological and field parameters with their respective test method and IDEM quantification limits. Table 7 shows bacteriological and water chemistry sample container, preservative, and holding time requirements when all samples must be iced to 4°C. Table 8 lists numerous parameters like priority metals, anions/physical, and nutrients/organic with their respective test methods, IDEM reporting limits, and contract laboratory reporting limits. The IDEM OWQ Field Chain of Custody Form (Attachment 6) and the 2024 Corvallis Water Sample Analysis Request Forms (Attachment 7) accompanies each sample set through the analytical process.

B.4. Quality Control and Custody Requirements

QA protocols will follow part B5 of the Surface Water QAPP (IDEM 2023a, pg. 91 and B.5 of the Biological and Habitat QAPP (IDEM 2020a, pg. 27).

B.4.1. Bacteriological Data

Bacteriological samples will be analyzed using the SM 9223B Enzyme Substrate Coliform Test Method (see Table 6 for quantification limits). Samples will be collected using 120 mL presterilized wide mouth containers and adhere to the six-hour holding time (Table 7). Analytical results from the IDEM Fixed and/or Mobile *E. coli* Laboratory include QC check sample results from which precision, accuracy, and completeness can be determined for each batch of samples (IDEM 2023a). Raw data are archived by analytical batch for easy retrieval and review. Chain of custody procedures must be followed and include: time of collection, time of setup, time of reading the results, and time and method of disposal (IDEM 2023b). Any method deviations will be thoroughly documented in the field notes.

All QA/QC samples will be tested according to the following guidelines:

Field duplicate: Field duplicates will be collected at a frequency of 1 per batch or at least 1 for every 20 samples collected (≥ 5%).

Field blank: Field blanks will be collected at a frequency of 1 per batch or at least 1 for every 20 samples collected (≥ 5%).

Laboratory blank: Laboratory blanks (sterile laboratory water blanks) will be tested at a frequency of 1 per day.

Positive control: Each lot of media will be tested with *E. coli* bacterial cultures for positive performance (SM 9020 B.8 and B.9).

Negative controls: Each lot of media will be tested with bacterial cultures other than *E. coli* or a noncoliform for negative performance (SM 9020 B.8 and B.9).

QA documentation for each batch of samples consists of a chain of custody form, a QA/QC summary sheet, and spreadsheets of results. This documentation is submitted to the Technical and Logistical Services Section for QA review and the assignment of an appropriate DQA Level.

B.4.2. Water Chemistry Data

Sample bottles and preservatives certified for purity will be used. Sample collection procedures, including the container and preservative used for each parameter and holding times will adhere to U.S. EPA requirements for water chemistry testing (see Table 8). Field duplicates and matrix spike/matrix spike duplicates (MS/MSD) shall be collected at the rate of one per sample analysis set or one per every 20 samples, whichever is greater (IDEM 2023a). Additionally, field blank samples using American Society for Testing and Materials (ASTM) D1193-91 Type I water will be taken at a rate of one set per sampling crew for each week of sampling activity (IDEM 2020c). All samples collected for water chemistry analysis will be processed by Pace Analytical Services, Inc. (Indianapolis, Indiana) following the specifications set forth in Request for Proposals 22-68153 (IDEM 2021a).

Table 6. Bacteriological and Field Parameters showing method and IDEM quantification limit.

Parameters	Method	IDEM Quantification Limit
E. coli (Enzyme Substrate Coliform Test)	SM ¹ 9223B	1 MPN ² / 100 mL
Dissolved oxygen (data sonde optical)	ASTM D888-09	0.05 mg/L
Dissolved oxygen % Saturation (data sonde optical)	ASTM D888-09	0.05 %
Dissolved oxygen (membrane probe)	SM4500-OG ³	0.05 mg/L
pH (data sonde)	U.S. EPA 150.2	0.10 SU
pH (field pH meter)	SM 4500H-B ³	0.10 SU
Specific conductance (data sonde)	SM 2510B	1.00 µmhos/cm
Temperature (data sonde)	SM 2550B(2)	0.1 Degrees Celsius (°C)
Temperature (field meter)	SM 2550B(2) ³	0.1 Degrees Celsius (°C)
Turbidity (data sonde)	SM 2130B	0.02 NTU ⁴
Turbidity (Hach™ turbidity kit)	U.S. EPA 180.1	0.05 NTU ⁴

¹ SM = Standard Method

Table 7. Bacteriological and Water Chemistry Sample Container, Preservative, and Holding Time Requirements¹

Parameter	Container	Preservative	Holding Time
^{1,2} Alkalinity as CaCO ₃ *	1 L, HDPE, narrow mouth	None	14 days
³ Ammonia-N**	1 L, glass, Amber Boston Round	H ₂ SO ₄ < pH 2	28 days
Chloride*	1 L, HDPE, narrow mouth	None	28 days
Chemical oxygen demand**	1 L, glass, Amber Boston Round	H ₂ SO ₄ < pH 2	28 days
Cyanide (All forms)	1 L, HDPE, narrow mouth	NaOH > pH 12	14 days
Dissolved organic carbon	1 L, glass, Amber Boston Round	H ₂ SO ₄ < pH 2	28 days
E. coli	120 mL, presterilized, wide mouth	Na ₂ S ₂ O ₃	6 hours
Hardness (as CaCO ₃ *) calculated	1 L, HDPE, narrow mouth	HNO₃ < pH 2	6 months
Metals (Total and Dissolved)	1 L, HDPE, narrow mouth	HNO₃ < pH 2	6 months
Nitrogen, nitrate + nitrite**	1 L, glass, Amber Boston Round	H ₂ SO ₄ < pH 2	28 days
Total phosphorus**	1 L, glass, Amber Boston Round	H ₂ SO ₄ < pH 2	28 days
⁵ Solids (All Forms)*	1 L, HDPE, narrow mouth	None	7 days
Sulfate*	1 L, HDPE, narrow mouth	None	28 days
Total Kjeldahl nitrogen**	1 L, glass, Amber Boston Round	H ₂ SO ₄ < pH 2	28 days
Total organic carbon**	1 L, glass, Amber Boston Round	H ₂ SO ₄ < pH 2	28 days
Dissolved organic carbon**	1 L, glass, Amber Boston Round	H ₂ SO ₄ < pH 2	28 days

¹ All samples iced to 4°C.

² 1 MPN (Most Probable Number) = 1 CFU (Colony Forming Unit)

³ Method used for Field Calibration Check

⁴ NTU = Nephelometric Turbidity Unit(s)

² General chemistry includes all parameters noted with an *

³ Nutrients include all parameters noted with a **

⁴ HDPE – High Density Polyethylene

⁵ Separate 1 Liter sample is required for Total Suspended Solids

Table 8. Water Chemistry Parameters with Test Method and IDEM and Laboratory Reporting Limits.

		Pri	ority Metals		
<u>Parameter</u>	<u>Total</u>	Dissolved	Test Method	IDEM- requested Reporting Limit (µg/L)	Pace Laboratory Reporting Limit (µg/L)
Aluminum	X	X	U.S. EPA 200.8	10	10
Antimony	X	X	U.S. EPA 200.8	1	1
Arsenic	\boxtimes	X	U.S. EPA 200.8	2	1
Calcium	X		U.S. EPA 200.7	20	1,000
Cadmium	X	X	U.S. EPA 200.8	1	0.2
Chromium	X	X	U.S. EPA 200.8	3	2
Copper	X	X	U.S. EPA 200.8	2	1
Lead	X	X	U.S. EPA 200.8	2	1
Magnesium	X		U.S. EPA 200.7	95	1,000
Nickel	X	X	U.S. EPA 200.8	1.5	0.5
Selenium	X	X	U.S. EPA 200.8	4	1
Silver	X	X	U.S. EPA 200.8	0.3	0.5
Zinc	\boxtimes	X	U.S. EPA 200.8	5	3

An	ions/Physical		
<u>Parameter</u>	Pace Test Method	IDEM- requested Reporting Limit (mg/L)	Pace Laboratory Reporting Limit (mg/L)
Alkalinity (as CaCO ₃)	SM 2320B	10	10
Total Solids	SM 2540B	1	10
Total Suspended Solids	SM 2540D	1	2.5
Dissolved Solids	SM 2540C	10	10
Sulfate	U.S. EPA 300.0	0.05	0.25
Chloride	U.S. EPA 300.0	1	0.25
Hardness (as CaCO ₃) by calculation	SM 2340B	0.4	10

Nutrien	ts/Organic (Pace)		
<u>Parameter</u>	Pace Test Method	IDEM- requested Reporting Limit (mg/L)	Pace Laboratory Reporting Limit (mg/L)
Total Kjeldahl Nitrogen (TKN)	U.S. EPA 351.2	0.1	0.5
Ammonia-N	U.S. EPA 350.1	0.01	0.1
Nitrogen, Nitrate + Nitrite	U.S. EPA 353.2	0.05	0.1
Total Phosphorus	U.S. EPA 365.1	0.01	0.05
Total Organic Carbon (TOC)	SM 5310C	1	1
Dissolved Organic Carbon (DOC)	SM 5310C	1	1
Cyanide-Total	U.S. EPA 335.4	0.01	0.005
Cyanide-Weak Acid Dissociable	SM 4500CN-I	0.01	0.005
Chemical Oxygen Demand (COD)	U.S. EPA 410.4	3	10

SM: Standard Methods for the Examination of Water and Wastewater

U.S. EPA: United States Environmental Protection Agency

B.4.3. Algal Community Data

Excessive algal conditions will be recorded by staff if an algal bloom is observed on the water's surface or in the water column. Staff are not calibrated on this rating and the decision as to the severity of the bloom is based on best professional judgement, but an algal mat on the surface of the water or a bloom that gives the water the appearance of green paint would be justification for a decision of excessive algal conditions.

Duplicate diatom samples will be collected at 10 percent of sampling sites, approximately 5 in the basin. To decrease the potential for cross contamination and bias of the algal samples, all equipment that has come in contact with the sample will be cleaned with detergent and rinsed with ASTM D1193-91 Type III water after sampling has been completed at a given site. All sample labels must be accurately and thoroughly completed, including AIMS II sample numbers, date, stream name, and sampling location. Chain of custody forms will be completed in the field to document the collection and transfer of samples to the laboratory. Upon arrival to the laboratory, samples will be checked in by the laboratory manager. For diatom samples, a Laboratory Chain of Custody Form (Attachment 8) will be used to document when samples are removed from storage to be processed and made into permanent slide mounts.

QC of the diatom sampling, enumeration, and identification project will be documented by QC checks of both field and laboratory data. See page 23 in IDEM 2023h for a description of QA/QC protocols used in Diatom Identification and Enumeration. At least ten percent and up to 100 percent of diatom samples will be analyzed and verified (IDEM 2020a) by the Department of Biological and Environmental Sciences of Georgia College and State University following the specifications set forth in IDEM 2023h.

B.4.4. Fish Community Data

Fish community sampling revisits will be performed at a rate of 10 percent of the total fish community sites sampled, approximately 4 in the basin (IDEM 2023c). Revisit sampling will be performed with at least 2 weeks of recovery between the initial and revisit sampling events. The fish community revisit sampling and habitat assessment will be performed with either a partial or complete change in field team members (IDEM 2023c). The resulting IBI and QHEI total score between the initial visit and the revisit will be used to evaluate precision (IDEM 2020a). The IDEM OWQ Chain of Custody Form is used to track samples from the field to the laboratory (Attachment 6). Fish taxonomic identifications made by IDEM staff in the laboratory may be verified by regionally recognized non-IDEM freshwater fish taxonomists (e.g., Brant Fisher, Nongame Aquatic Biologist, Indiana Department of Natural Resources). All raw data are: 1) checked for completeness; 2) utilized to calculate derived data (i.e., total

weight of all specimens of a taxon), which is entered into the AIMS II database; and 3) checked again for data entry errors.

B.4.5. Macroinvertebrate Community Data

Sites at which duplicate macroinvertebrate field samples will be collected are randomly selected prior to the beginning of the field season and occur at a rate of 10 percent of the total macroinvertebrate community sites sampled, approximately 4 in the basin. The macroinvertebrate community duplicate sample and corresponding habitat assessment will be performed by the same team member who performed the original sample and will be conducted immediately after the initial sample is collected. This will result in a precision evaluation based on a 10% duplicate of samples collected (IDEM 2020a). Sites in the basin will be divided equally among the macroinvertebrate staff; each staff will be responsible for collecting at least one duplicate sample. The IDEM OWQ Field Chain of Custody Form is used to track samples from the field to the laboratory (Attachment 6). The IDEM macroinvertebrate laboratory supervisor maintains Laboratory identifications and QA/QC of taxonomic work. A Laboratory Chain of Custody Form (Attachment 8) will be used to document when the sample is removed from storage to be processed and when the sample is returned to storage. 10% of samples (the initial samples taken at sites where duplicate samples were collected) will be verified by an outside taxonomist (IDEM 2020a).

B.5. Field Parameter Measurements, Instrument Testing, Calibration

The data sonde will be calibrated immediately prior to each week's sampling (IDEM 2023f). The dissolved oxygen component of the calibration procedure will be conducted using the air calibration method. Calibration results and drift values will be recorded, maintained, stored, and archived in the calibration laboratories at the Shadeland facility. The drift value is the difference between two successive calibrations. Field parameter calibrations will conform to the procedures described in the instrument user's manuals (IDEM 2023f, IDEM 2020c). The unit will be field checked for accuracy once during the week by comparison with a YSI D.O. meter (IDEM 2023f) as well as Hach turbidity and Oakton pH and temperature meters (IDEM 2020c). Weekly field calibration records will be recorded in the field calibrations portion of Attachment 2 and entered into the AIMS II database. The YSI D.O. meter will also be used in the field at sites where the dissolved oxygen concentration is 4.0 mg/L or less.

B.5.1. Field Analysis Data

In-situ water chemistry field data are collected in the field using calibrated or standardized equipment. Calculations may be done in the field or later at the office. Analytical results, which have limited QC checks, are included in this category. Detection limits and ranges have been set for each analysis. QC checks are performed on information for field or laboratory results to estimate precision, accuracy, and completeness for

the project, as described in the Surface Water QAPP (IDEM 2023a) Section C1.1 on page 91.

B.5.2. Algal Community Data

IDEM 2023f describes the equipment required for the collection of periphyton; none of this equipment requires calibration. Equipment has been field tested to ensure its capability of appropriately removing periphyton from different types of substrates such as rocks, sticks, or sand/silt (IDEM 2023f).

IDEM 2023h describes the equipment required for the preparation of permanent diatom mounts; other than the micropipetter, none of the laboratory equipment requires calibration. The micropipetter will be checked and recalibrated as necessary according to manufacturer's specifications (IDEM 2023h).

A Nikon differential interference contrast (DIC) microscope, and Nikon Elements D camera and imaging system will be used for identification and enumeration of diatoms. Branch staff calibrated the ocular reticle in the microscope. The ocular reticle was calibrated at each magnification with a stage micrometer. The calibration should be checked again if the microscope is moved to a new location.

C. Assessment and Oversight

Field and laboratory performance and system audits will be conducted to ensure good quality data. The field and laboratory performance checks include precision measurements by relative percent difference (RPD) of field and laboratory duplicate, accuracy measurements by percent of recovery of MS/MSD samples analyzed in the laboratory, and completeness measurements by the percent of planned samples that are actually collected, analyzed, reported, and usable for the project (IDEM 2023a, p. 128-146).

For biological and habitat measurements, field performance measurements include: completeness (IDEM 2020a, pp. 10-11, 14, 17), examination of fish IBI score differences and the RPD for number of fish species at the revisit sites (IDEM 2020a, pp. 9-10), RPD for number of taxon for macroinvertebrate duplicate samples (IDEM 2020a, p. 13), RPD for number of taxon for diatom duplicate samples (IDEM 2020a, p. 17), and RPD between the two total QHEI scores (IDEM 2020a, p. 18). Lab performance measurements include: PTD for fish (IDEM 2020a, p. 12), macroinvertebrates (IDEM 2020a, pp. 15-16) and diatoms (IDEM 2020a, pp. 18); as well as PDE and PSE for macroinvertebrates (IDEM 2020a, pp. 14-16).

Field audits will be conducted biannually by staff of the IDEM WAPB to ensure that sampling activities adhere to approved SOPs. Audits are systematically conducted by WAPB QA staff to include all WAPB personnel that engage in field sampling activities. WAPB field staff involved with sample collection and preparation will be evaluated by QA staff trained in the associated sampling

SOPs, and in the processes related to conducting an audit. QA staff will produce an evaluation report documenting each audit for review by those field staff audited, as well as WAPB management. Corrective actions will be communicated to, and implemented by, field staff as a result of the audit process (IDEM 2023a, p. 109; IDEM 2020a, p. 31).

Contract laboratories are required to have NELAC audits at the beginning of a laboratory contract and at least once a year during the contract. In addition, performance studies conducted by the contract laboratories are reviewed annually by IDEM QA staff. The audit includes any or all of the operational quality control elements of the laboratory's quality assurance system. All applicable elements of this quality assurance project plan and the laboratory contract requirements are addressed including, but not limited to, sampling handling, sample analysis, record keeping, preventative maintenance, proficiency testing, personnel requirements, training, and workload. (IDEM 2023a, p. 99).

For macroinvertebrate verifications by an external lab, the lab is required to maintain Society for Freshwater Science taxonomic certifications for their taxonomists. Genus level taxonomic certifications are required for 1. Eastern General Arthropods, 2. Eastern Ephemeroptera, Plecoptera and Trichoptera, 3. Chironomidae, and 4. Oligochaeta.

C.1. Data Quality Assessment Levels

The samples and various types of data collected by this program are intended to meet the QA criteria and rated DQA Level 3, as described in the Surface Water QAPP (IDEM 2023a, pp. 104-108) and the Biological and Habitat QAPP (IDEM 2020a, pp. 34-35).

D. Data Validation and Usability

Quality Assurance reports to management and data validation and usability are also important components of the QAPP which ensures good quality data for this project. A QA audit report will be submitted to the QA manager and project manager for review for this project should problems arise and need to be investigated and corrected. Data are reduced by converting from raw analytical data into final results in proper reporting units, validated by qualifying based on the performance of field and laboratory QC measures incorporated into the sampling and analysis procedures, and reported by describing so as to completely document the calibration, analysis, QC measures, and calculations. These steps allow users to assess the data to ensure it meets the project data quality objectives.

D.1. Quality Assurance - Data Qualifiers and Flags

The various data qualifiers and flags used for QA and validation of the data are found on pages 106–107 of the Surface Water QAPP (IDEM 2023a) and pages 33-34 of the Biological and Habitat QAPP (IDEM 2020a).

D.2. Data Usability

The environmental data collected and its usability are qualified per each lab or field result obtained and classified into one or more of the four categories: Screening Data, Field Analysis Data, Laboratory Analytical Data, and Enforcement Data as described on pages 107-108 of the Surface Water QAPP (IDEM 2023a) and page 35-36 of the Biological and Habitat QAPP (IDEM 2020a).

D.3. Information, Data, and Reports

Data collected in 2024 will be recorded in the AIMS II database and presented in three compilation summaries. The first summary will be a general compilation of the 2024 Upper Wabash River Basin field and water chemistry data prepared for use in the 2026 Integrated Report. The second summary will be in database report format containing biological results and habitat evaluations, which will be produced for inclusion in the Integrated Report as well as individual site folders. All site folders are maintained at the WAPB facility. The third summary will include diatom species taxa names and enumerations on laboratory bench sheets. Using U.S. EPA's *spsurvey* package, written in the "R" programing language (R Core Team 2021), the percent of perennial stream miles in the basin that support, or do not support aquatic life and recreational uses will be made following use attainment decisions for each site sampled (IDEM 2020b). All data and reports will be made available to public and private entities which may find the data useful for municipal, industrial, agricultural, and recreational decision making processes (TMDL, NPDES permit modeling, Watershed Restoration Projects, Water Quality Criteria refinement, etc.).

D.4. Laboratory and Estimated Cost

Laboratory analysis and data reporting for this project will comply with the Surface Water QAPP and TMDL Program (B-001-OWQ-WAP-XX-23-Q-R5, see IDEM 2023a), Request for Proposals 22-68153 (Contract #58463, PO #20003041, Line #7; see IDEM 2021a), and the IDEM Quality Management Plan (IDEM 2023k). Analytical tests on the water chemistry parameters outlined in Table 8 will be performed by Pace Analytical Services in Indianapolis, Indiana. Accreditation related to Pace Indy is included as Appendix 1. Supplies for the bacteriological sampling will come from IDEXX Laboratories, Inc., Westbrook, Maine. Algal samples will be collected by IDEM staff. Periphyton laboratory processing and diatom slide mounting will be performed by IDEM Staff. Diatom identification and enumeration will be performed by an outside contractor (IDEM 2020a), the Department of Biological and Environmental Sciences, Georgia College and State University. All fish and macroinvertebrate samples will be collected and analyzed by IDEM staff. An outside contractor (IDEM 2020a) will verify ten percent of macroinvertebrate samples. The anticipated budget for laboratory cost for the project is outlined in Table 9.

Table 9. Total Estimated Laboratory Cost for the Project.

Analysis	Number of Samples Collected	Laboratory	Estimated Cost
Water chemistry	3 times @ 45 sites + 10 duplicates + 10 field blanks (1 per sample week) = 155 samples	Pace Analytical Services 7726 Moller Road. Indianapolis, Indiana 46268	\$87,640
Bacteriological (<i>E. coli</i>)	5 times @ 40 sites + 10 blanks + 10 duplicates + 30 equipment blanks = 250 samples	IDEM Fixed and/or Mobile <i>E.coli</i> Laboratory Supplies: IDEXX Laboratories, Inc. One IDEXX Drive Westbrook, Maine 04092	\$1,235
Diatom identification and enumeration	1 time @ 45 sites + 5 duplicates (1 per sample week) = 50 samples All samples sent out for verification	Department of Biological and Environmental Sciences Georgia College and State University 320 S. Wayne St. Milledgeville, Georgia 31061	\$8750
Macroinvertebrate identification	1 time @ 38 sites + 4 duplicates = 42 samples 4 samples (10%) sent out for verification	Rhithron Associates, Inc. 33 Fort Missoula Road Missoula, Montana 59804	\$920

Total \$98,545

Table 10. Personnel Safety and Reference Manuals

	Training	Training Notes
Training/Experience	References	Training Notoc
-Basic First Aid and	-A minimum of 4	-Staff lacking 4 hours of
Cardiopulmonary	hours of in-service	in-service training or
Resuscitation (CPR)	training provided by	appropriate certification
	WAPB (IDEM	will be accompanied in
	2010a)	the field at all times by
		WAPB staff that meet
		Health and Safety
		Training requirements
	-IDEM 2008	-When working on
Equipment (PPE) Policy		boundary waters as
5 1517	F 1 00 0000	defined by Indiana
	1	Code (IC) <u>14-8-2-27</u> or
Devices (PFD)		between sunset and
		sunrise on any waters
	, ,	of the state, all
	approved PFDS	personnel in the
		watercraft must wear a high intensity whistle
		and Safety of Life at
		Sea (SOLAS) certified
		strobe light.
	-Basic First Aid and Cardiopulmonary	Training/Experience -Basic First Aid and Cardiopulmonary Resuscitation (CPR) -Personal Protective Equipment (PPE) Policy -Personal Flotation -References -A minimum of 4 hours of in-service training provided by WAPB (IDEM 2010a) -IDEM 2008 -February 29, 2000

E. References

- Code of Federal Regulations, <u>40 CFR Part 130.7</u> Total maximum daily loads (TMDL) and individual water quality-based effluent limitations.
- (U.S. EPA 2002). <u>Guidance for Quality Assurance Project Plans.</u> EPA QA/G-5, EPA/240R-02/009. U.S. EPA, Office of Environmental Information, Washington D.C.
- (U.S. EPA 2005). <u>Guidance for 2006 Assessment, Listing and Reporting Requirements Pursuant to Sections 303(d), 305(b) and 314 of the Clean Water Act, July 29, 2005. Washington, D.C.: U.S. Environmental Protection Agency.</u>
- (U.S. EPA 2006). <u>Guidance on Systematic Planning Using the Data Quality</u>
 <u>Objectives Process.</u> EPA QA/G-4. EPA/240/B-06/001. U.S. EPA, Office of Environmental Information, Washington D.C.
- (U.S. EPA 2016). Weight of Evidence in Ecological Assessment. EPA/100/R-16/001. U.S. EPA, Office of Environmental Information, Washington D.C.
- U.S. EPA, National Health and Environmental Effects Research Lab (NHEERL)/Office of Research and Development (ORD) Western Ecology Division, 200 S.W. 35th Street, Corvallis, OR 97333-4902.
- (IC 14-8-2-27) IC (Indiana Code), <u>Title 14 Natural and Cultural Resources</u>, <u>Article 8 General Provisions and Definitions</u>. 2017.
- [327 IAC 2] IAC (Indiana Administrative Code), <u>Title 327 Water Pollution Control Division</u>, <u>Article 2</u>. <u>Water Quality Standards</u>. Last updated March 14, 2018.
- (IDEM 2008). <u>IDEM Personal Protective Equipment Policy, revised May 1 2008</u>. A-059-OEA-08-P-R0. Office of External Affairs, Indiana Department of Environmental Management, Indianapolis, Indiana.
- (IDEM 2010a). <u>IDEM Health and Safety Training Policy, revised October 1 2010</u>. A-030-OEA-10-P-R2. IDEM, Indianapolis, Indiana.
- (IDEM 2010b). <u>IDEM Injury and Illness Resulting from Occupational Exposure</u>
 <u>Policy, revised October 1 2010.</u> A-034-OEA-10-P-R2. IDEM, Indianapolis, Indiana.
- (IDEM 2018). Phytoplankton and Periphyton Field Collection Procedures. B-004-OWQ-WAP-XX-18-T-R1. Office of Water Quality, Watershed Assessment and Planning Branch. Indianapolis, Indiana.
- (IDEM 2019) <u>IDEM Hazard Communication (HazCom) Plan</u>. IDEM, Office of Program Support, Indianapolis, Indiana.
- (IDEM 2020a). Quality Assurance Project Plan for Biological Community and Habitat Measurements. B-003-OWQ-WAP-XXX-20-Q-R0. Indiana Department of Environmental Management, Office of Water Quality, Watershed Assessment and Planning Branch, Indianapolis, Indiana.

- (IDEM 2020b). <u>Calculation of Aquatic Life Use Support Estimates. S-001-OWQ-WAP-PRB-20-T-R0.</u> Office of Water Quality, Watershed Assessment and Planning Branch. Indianapolis, Indiana.
- (IDEM 2020c). Water Chemistry Field Sampling Procedures. B-015-OWQ-WAP-XXX-20-T-R0. Office of Water Quality, Watershed Assessment and Planning Branch. Indianapolis, Indiana.
- (IDEM 2021a). Request for Proposals 22-68153, Solicitation for Analyses. Indiana Department of Environmental Management. Indiana Department of Administration. Indianapolis, Indiana.
- (IDEM 2021b) Office of Water Quality Watershed assessment and Planning Branch Laboratory Safety Plan. IDEM, Office of Program Support, Indianapolis, Indiana.
- (IDEM 2023a). Quality Assurance Project Plan for Indiana Surface Water Programs, Revision 5. B-001-OWQ-WAP-XX-23-Q-R5. Indiana Department of Environmental Management, Office of Water Quality, Watershed Assessment and Planning Branch, Indianapolis, Indiana.
- (IDEM 2023b). E.coli Field Sampling and Analysis. B-013-OWQ-WAP-XXX-23-T-R1. Watershed Planning and Assessment Branch, Office of Water Quality, Indiana Department of Environmental Management, Indianapolis, Indiana.
- (IDEM 2023c). Fish Community Field Collection Procedures. B-009-OWQ-WAP-XXX-23-T-R1. Office of Water Quality, Watershed Assessment and Planning Branch. Indianapolis, Indiana.
- (IDEM 2023d). Global Navigational Satellite System (GNSS) R1 Unit User Instructions. B-055-OWQ-WAP-XXX-23-T-R0. Watershed Planning and Assessment Branch, Office of Water Quality, Indiana Department of Environmental Management, Indianapolis, Indiana.
- (IDEM 2023e). Multi-habitat (MHAB) Macroinvertebrate Collection Technical Standard Operating Procedure. B-011-OWQ-WAP-XXX-23-T-R1.

 Watershed Planning and Assessment Branch, Office of Water Quality, Indiana Department of Environmental Management, Indianapolis, Indiana.
- (IDEM 2023f). <u>Calibration of YSI Multi-parameter Data Sondes B-014-OWQ-WAP-XXX-23-T-R1.</u> Office of Water Quality, Watershed Assessment and Planning Branch. Indianapolis, Indiana.
- (IDEM 2023g). Procedures for Completing the Qualitative Habitat Evaluation Index. B-003-OWQ-WAP-XX-19-T-R1. Office of Water Quality, Watershed Assessment and Planning Branch. Indianapolis, Indiana.
- (IDEM 2023h). <u>Processing and Identification of Diatom Samples.</u> B-002-OWQ-WAP-TGM-23-T-R1. Office of Water Quality, Watershed Assessment and Planning Branch. Indianapolis, Indiana.
- (IDEM 2023i). Processing and Identification of Macroinvertebrate Samples. B-061-OWQ-WAP-XXX-23-T-R0. Office of Water Quality, Watershed Assessment and Planning Branch. Indianapolis, Indiana.

- (IDEM 2023j). <u>Site Reconnaissance Procedure.</u> B-002-OWQ-WAP-PRB-23-S-R1. Office of Water Quality, Watershed Assessment and Planning Branch. Indianapolis, Indiana.
- (IDEM 2023k). <u>IDEM Quality Management Plan</u>. IDEM, Indiana Government Center North, 100 N. Senate Ave., Indianapolis, Indiana, 46204.
- (IDEM 2024). Indiana's Integrated Water Monitoring and Assessment Report to the U.S. EPA (Revised), Appendix G: IDEM's 2024 Consolidated
 Assessment and Listing Methodology (CALM). Office of Water Quality, Indiana Department of Environmental Management, Indianapolis, Indiana.
- (OHEPA 2006). Ohio Environmental Protection Agency. 2006. Methods for Assessing Habitat in Flowing Waters: Using the Qualitative Habitat Evaluation Index (QHEI). OHIO EPA Technical Bulletin EAS/2006-06-1. Revised by the Midwest Biodiversity Institute for State of Ohio Environmental Protection Agency, Division of Surface Water, Ecological Assessment Section, Groveport, Ohio.
- (Kentucky Department of Environmental Protection 2002). Methods for assessing biological integrity of surface waters. Kentucky Department of Environmental Protection, Division of Water, Frankfort, Kentucky.
- (Barbour et al. 1999) Barbour, M.T., J. Gerritsen, B.D. Snyder and J.B. Stribling. 1999. Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates and Fish, Second Edition. EPA/841/B-99/002. U.S. Environmental Protection Agency; Office of Water; Washington, D.C.
- (Caskey et al. 2013) Caskey, B.J., A.R. Bunch, M.E. Shoda, J.W. Frey, S. Selvaratnam, and R.J. Miltner. 2013. <u>Identifying Nutrient Reference Sites in Nutrient-Enriched Regions: Using Algal, Invertebrate, and Fish-Community Measures to Identify Stressor-Breakpoint Thresholds in Indiana Rivers and Streams, 2005–9. U.S. Geological Survey Scientific Investigations Report 2012-5243. 28 pp.</u>
- (Dewitz 2023) Dewitz, J. 2023. <u>National Land Cover Database (NLCD) 2021</u>
 <u>Products [Data Set]</u>. U.S. Geological Survey.
- (Dufour 2002) Dufour, R.L. 2002. Guide to appropriate metric selection for calculating the index of biotic integrity (IBI) for Indiana rivers and streams. Indiana Department of Environmental Management, Indianapolis, Indiana.
- (Elliott 1983) Elliott, J.M. 1983. Some Methods for the Statistical Analysis of Samples of Benthic Macroinvertebrates. Freshwater Biological Association Scientific Publication No. 25. 159 pp.
- (Hill et al. 1997) Hill, B. H., Herlihy, A.T., Kaufmann, P.R., Stevenson, R.J., McCormick, F.H. and Johnson, C.B. 1997. <u>The use of periphyton</u> <u>assemblage data in an index of biotic integrity.</u> Bulletin of the North American Benthological Society. 19(1): 50–67.

- (Jessup et al. 2021) Jessup, B., Block, B., Stamp, J., and Leppo, E. 2021.

 <u>Diatoms in Indiana Streams as Indicators of Biological Condition.</u> Tetra
 Tech, Montpelier, Vermont.
- (Klemm et al. 1990) Klemm, D.J., Lewis, P.A., Fulk, F. and Lazorchak, J.M. 1990.

 <u>Macroinvertebrate Field and Laboratory Methods for Evaluating the Biological Integrity of Surface Waters</u>. EPA/600/4-90/030. Environmental Monitoring Systems Laboratory, Monitoring Systems and Quality Assurance, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio.
- (Moore et al. 2019) Moore, R.B., McKay, L.D., Rea, A.H., Bondelid, T.R., Price, C.V., Dewald, T.G., and Johnston, C.M. 2019, <u>User's guide for the national hydrography dataset plus (NHDPlus) high resolution</u>: U.S. Geological Survey Open-File Report 2019–1096.
- (Plafkin et al. 1989) Plafkin, J.L., Barbour, M.T., Porter, K.D., Gross, S.K. and Hughes, R.M. 1989. Rapid Bioassessment Protocols for Use in Streams and Rivers: Benthic Macroinvertebrates and Fish. EPA/440/4-89/001.

 Assessment and Watershed Protection Division, U.S. Environmental Protection Agency, Washington, D.C.
- (Simon 2006) Simon, T.P. 2006. <u>Development, Calibration, and Validation of an Index of Biotic Integrity for the Wabash River</u>. Proceedings of the Indiana Academy of Science 115(2):170-186.
- (Simon and Dufour 1998) Simon, T.P. and Dufour, R.L. 1998. <u>Development of Index of Biotic Integrity Expectations for the Ecoregions of Indiana V. Eastern Cornbelt Plain</u>. U.S. Environmental Protection Agency, Region V, Water Division, Watershed and Non-Point Branch, Chicago. IL.
- (Simon and Dufour 2005) Simon, T.P. and Dufour, R.L. 2005. <u>Guide to appropriate metric selection for calculating the Index of Biotic Integrity (IBI) for Indiana Large and Great Rivers, Inland Lakes, and Great Lakes nearshore</u>. U.S. Department of the Interior, Fish and Wildlife Service, Bloomington Field Office, Bloomington, Indiana.
- (Simon and Stahl 1998) Simon, T.P. and James R. Stahl. 1998. Development of Index of Biotic Integrity Expectations for the Wabash River. U.S. Environmental Protection Agency, Region V, Water Division, Watershed and Non-Point Branch, Chicago. IL. EPA 905/R-96/005.
- (Stevenson 1998) Stevenson, R. J. 1998. <u>Diatom indicators of stream and wetland stressors in a risk management framework</u>. Environmental Monitoring and Assessment 51:107–118.
- (Stevenson and Pan 1999) Stevenson, R. J. and Pan, Y. 1999. Assessing ecological conditions in rivers and streams with diatoms. Pages 11–40 in E. F. Stoermer and J. P. Smol, editors. The Diatoms: Applications to the Environmental and Earth Sciences. Cambridge University Press, Cambridge, UK.
- (R Core Team 2021). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.

(YSI Incoporated 2017). EXO User Manual, revision g. Yellow Springs, Ohio.

(YSI Incoporated 2020). <u>ProDigital User Manual, revision H. Yellow Springs, Ohio.</u>

F. Distribution List

Electronic Distribution Only:

	Electronic Distribution Only.
<u>Name</u>	<u>Organization</u>
Lindsay Hylton Adams	IDEM, OWQ, WAPB, Watershed Planning and
	Restoration Section (Northwest Specialist)
Kristen Arnold	IDEM, OWQ, WAPB (Branch Chief)
Timothy Bowren	IDEM, OWQ, WAPB, Technical and Logistical Services
	Section
Dylan Brown	IDEM, OWQ, WAPB, Probabilistic Monitoring Section
McKenzie Bruder	IDEM, OWQ, WAPB, Probabilistic Monitoring Section
Pat Colcord	IDEM, Office of Program Support, QA Program
Marissa Cubbage	IDEM, OWQ, WAPB, Probabilistic Monitoring Section
Kevin Gaston	IDEM, OWQ, WAPB, Probabilistic Monitoring Section
Paul Higginbotham	IDEM, OWQ (Deputy Assistant Commissioner)
Charles Hostetter	IDEM, OWQ, WAPB, Technical and Logistical Services
	Section
David Jordan	IDEM, OWQ, WAPB, Technical and Logistical Services
	Section
Paula Kaszynski	IDEM, OWQ, WAPB, Probabilistic Monitoring Section
Kalina Manoylov	Georgia College and State University,
	Department of Biological and Environmental Sciences
Paul McMurray	IDEM, OWQ, WAPB (Technical E7, Integrated Report
A 1' B 4 'I	Coordinator)
Ali Meils	IDEM, OWQ, WAPB, Targeted Monitoring Section
NAtl Oll - NA - ttl	(Section Chief)
Martha Clark Mettler	IDEM, OWQ (Assistant Commissioner)
Caleb Rennaker	IDEM, OWQ, WAPB, Watershed Planning and
Michelle Duen	Restoration (Section Chief)
Michelle Ruan Michael Schneider	IDEM, OWQ, WAPB, Targeted Monitoring Section IDEM, OWQ, WAPB, Probabilistic Monitoring Section
Addison Seidler	IDEM, OWQ, WAPB, Probabilistic Monitoring Section
	IDEM, OWQ, WAPB, Probabilistic Monitoring Section
Stacey Sobat	(Section Chief)
David Tsetse	IDEM, OWQ, WAPB, Technical and Logistical Services
	Section (Section Chief)
Miranda Wentz	IDEM, OWQ, WAPB, Watershed Planning and
	Restoration Section (Northeast Specialist)
Kayla Werbianskyj	IDEM, OWQ, WAPB, Targeted Monitoring Section
Cameron Yeakle	IDEM, OWQ, WAPB, Targeted Monitoring Section
Scott Zello-Dean	IDEM, OWQ, WAPB, Probabilistic Monitoring Section

Attachment 1. IDEM Site Reconnaissance Form

_	3\\				Recon #:							
					Trip#:							
ne Number:			Stream:		County:							
ocation Des	eription:				200							
	Reconnaissa	ance Data Collecte	ed	Lando	wner/Contact In	formation						
	Recon Date		Members	First Name		Name						
(m)	Avg. Depth (m)	Max. Depth (m)	Nearest Town	Street A ddress								
Water		Riffle/Run	Road/Public									
Present?	Site Wadeable?	Present?	Access Possible?	Ctty		State	Zip					
tre Impacted Livestock	d by Collect Sec	diment? Gau	ige Present?	Telephone	E4	Mail Addres	8					
				a reconstruction		1000000	S2-					
				Pamphler Distributed?	Please Call In Advance?	Regues						
			Rating, Results, Comm	ents, and Planning		100						
ite Rating B	y Category	Dana				1 <u>213 232</u> 0	0.0000014					
=easy, 10=0	inflicult)	Reconnaissan	ice Decision	Equipment Se	elected	Circle Equipment Needed						
Acces	ss Route	Pre-Recon		i i		500 800 80	3					
	8	Recon in proce Approved Site	66			Backpack						
		The second contract of the con	r denied access			Boar						
Safen	y Factor	No, Dry				Totebarge						
		No, Stream cha				Longline						
		No, Physical ba No, Impounded				Scanoe						
		No, Marsh/Wet				Seine						
Sampli	ing Effort		e or not accessible			Weighted	Handline					
			e to traffic or location			Waders						
		No, Site Impact	ted by backwater			GIII Net						
						06.62000000-						
					1000							

Attachment 2. IDEM Stream Sampling Field Data Sheet

	∃.Y	<u>.</u>	Str	eam	S	amp	li	ng Fi	elc	1 D	at	ta S	h	<u>eet</u>	Analysis	Set#		EPA	Site	e ID	Ra	nk
Sample ‡	#	Si	ite#					Sample M	ediun	n				Sa	mple Type		Du	ıplica	ate S	Samp	le#	
Canada Mari											Div							_				
Stream Nan											RIV	er Mile	:			Coul	nty:					
Survey		nple Col	llecto	rs		Sample	Со	llected	Н	/drol	ab			ater Water Flo		ow	v Flow			_	Agu	atic
Crew Chief	1	2	3	4		Date		Time		#		Depti	n/G (ft	age Ht)	(cf/sec) Est	Estimated? Al		Alg	gae?	Lif	e?
S	In Tales	- 2		A 1:	liquete M			18/-4	FI-	т.				187				1	Н.	<u> </u>	_	0/
♦ Yes	ole Taker ◇ No	Frozen	< 1		iquots Water Flor				•	agnant	< c	lear	ater Appear	once ♦Sheen	Canopy Cl en		_	60-80				
♦ No; Stream			♦ 6	_	< 1	2 \24	- 1		Run	4	○ Flo	ood		lurky	♦ Black	♦ Other		◇ 20	409	-	80-10	0%
♦ No; Owner r	efused Ac	cess	< A	48	\$	S-Flow	0	Glide ◊	Eddy	4	≎ Otl	her	Ф В	rown	♦ Gray (Sep.	tic/Sewa	ge)	40	-60%	6		
Special Notes:																						
Field Dat	<u>a:</u>																					
Date (m/d/yy)	24-hr Ti (hh:mi	hr Time D.O. h:mm) (mg/l) pH				ater ip (°C)	•	ec Cond ohms/cm)	Turbi (NT		%	Sat.		lorine ng/l)	Chloride (mg/l)	Chlore (m	ophy g/l)		We SC	ather WD	WS	_
Comments											Т							Т				
Comments																						
Comments																						
Commente																						
Comments											Т											
Comments		$\overline{}$									_							$\overline{}$				
Comments																						
		Me	aeur	ement	<								١	Weather Co	le Defin	itior	ıs					
		INIC	Fla		> Max. Meter Measurement E Estimated (See Comments) R Rejected (See Comments)					SC Sky Conditions			WD Wind Direction			WS Wind Strength		gth	Air Te			
Field Cali	bratio	ns:										cattered	9	Snow	00 North (0 de 09 East (90 de	degrees) 1 L 0 degrees) 2 N 0 degrees) 3 N		0 Calm 1 Light			1 < 3 233-	45
Date (m/d/yy)	Time (hl mm)		orator tials	Тур	۵ ا	Calib Meter		ions Value	Uni	ite		oudy	10		18 South (180 27 West (270			Mod./I Mode	rate		3 46- 4 61-	75
(mraryy)	,		duis	Тур		Meter	π	Value	Oili	13	5 Mi 6 Fo	g	П				5	Mod./: Strong		ig	576- 6 > 8	
											7Sh	nower	П				6	Gale				
		+		+						\dashv			П									
		Calibr Ty		pH DO Turbidit	,			-	l													
Preserva	tives/E	ottle	Lot	<u>s:</u>	_		_					Groups						Bottle				
Group: Pres	servative	Pres	ervat	ive Lot	# B	ottle Typ	e	Bottle L	ot#	GC Nx	N	eneral C lutrients:	H29	SO4	e	2000P 1000P	1000	OmL F	lasti	c, Nan c, Nan	row M	outh
							+			CN	С	letals: HI yanide: I il & Grea	NaO	H		500P 250P 1000G	250r	mL Pla	astic,	Namo Namo Namo	ow Mo	uth
											ics T	oxics: Ice acteriolo	е			500G 250G	500r	mL GI	ass,	, Nam Wide Wide	Mouth	
										VO/ Pes	V V		rgan	nics: HC	& Thiosulfate		125r		ass,	Wide		
										Phe Sed	n P	henols: I ediment:	H2S	04		120PB 1000PF				Bacte c, Con		
										Gly Hg	M	lyphosat lercury(1	631): HCI		500PF 60P	60m	L Plas	stic	Comi	ing Fil	ter
										Cr6 Mel		hromium lethyl Me				250T 500T 125T	500r	mL Te mL Te mL Te	flon			
Data Entered	I Rv-			0	21:																	
QC2:				\	<u>_</u>																	

Attachment 3. IDEM Algal Biomass Lab Data Sheet

Algal Biomass Lab Datasheet

Sample #		Site						Stream	n						
Cunnadian	Othe Indoor	4													
Supporting			_		_										
Traditional F	orestry % Ck	sed Car		<=10m E							to neare				
			North		East		South	1	West			Aver	age x 1.04 =	•	
	Left Bank	+		_											
	Center	_		_							_				
Tel	Right Bank	_		0		v 000			40	0 - %CC					
100	al %CC (Ave	lage ilor	n above, o	Center o	rily = 7	600)			10	U - 76UU	•				
Phytoplankt	on Informat	lon													
	Sampling Method: Grab Sample (Dip) Multiple Verticles Number of Verticles:														
			ipie (Dip)	Blank	e veru	Filte	er 1		Filter 2	various v	Filte		Filte	or A	
	hiorphyli A		10	Diaris		1 1100			I IIICI Z		1 iiie		1 110		
		nple Time ume (mL)													
	Sample voi	une (mi	-,												
Periphyton i	Information														
Derinhyton	Periphyton Information														
	Periphyton Habitat: Epilithic (Area-Scape) Epidendric (Cylinder Scrape) Epipsammic (Petri Dish) Diatom Sample Collected: Yes No Diatom Volume: mL Formalin Volume: mL Siurry Volume mL														
		a.	□ Yes □		-					in volun		_			
	chiorphyll A	nple Tim		Blank		Filte	r 1	Filter 2			Filter	rs	Filter 4		
	Sample Vol	•			-										
	Sample Voi	ume (mi	-)												
Periphyton /	Area Calcula	ation													
Cylinder	scrape							Area Scrape (Using SG-92) Rock# 1				-			
	Length		ircumferer		١	Ал				-	2	3	4	5	
Snag#	(cm)(L)	Uı	U ₂	U ₃	U	(L.	U)		(cm²)	7.38	7.38	7.38		7.38	
2								Total	(cm²)			30	.9		
3								Petri	Dish						
4								Numi	er of Disc	rete Sar	mples (n)				
5								Total	Area of O	ne Sam	pler (a):	19.0	1 cm²		
				Total A	rea (cn	n2)		Total	Sample A	rea (n °	a):				
				100070	cu (ui	,				•	_				
Stream Disc	harge / Rain	ıfall info	rmation												
Nearest US	GS Gage St	he: 🗆 U	Instream [Downstr	ream	□ No USG	S Gage N	Vear							
River miles			pourcum c	2 DOWNOR		_ 110 000			CFS at s	amolino:	CES				
Gage locat									days sinc			eded: da	avs		
	ta source: 🗆	NOAA	□ CoCoP	aHS □ ir	ndlana	State Clim			-				,-		
	oltation at sar				randi idi	Otale Oilli			e rain 7 da				In		
	n location, co		or date				- In	ches sin	ce last rai	nfali pre	vious to a	sampling:	in.		
rvaint station	i iocason, co	uny.					Di	ays sinc	e last raini	fall previ	ous to sa	impling:	days		
Identifier	Dat		Revie	ver 1		Date	Rev	/lewer 2		Date			Notes:		
ruorium (Dat												140100.		
				Review 1 (Compli	eted		Revie	w 2 Comp	ileted					

Attachment 4. IDEM Fish Collection Data Sheet (front)

IDEM OWQ-WATERSHED ASSESSMENT AND PLANNING BRANCH

Voltage Time fished (sec)				Dis	Distance fished (m) Max Is reach representative If no, v					x. depth (m)				Avg. depth (m)					
								epresentati			why								
		malies	: D – d	leformiti	es E – er	oded fins	L – lesio	ons T – tum	or M -	- multiple [ELT anomalies	O – otl	her (A -	- ancho	r worm		ches		
TC	OTAL# (OF FIS	SH	,			V	VEIGHT (s)		<i>n</i>			ANON	1ALIES	6			
(m			(mas	is g)						(length mm) Min length	D	E	L	Т	М	0			
V		P									Max length		L	L	1	IVI			
											Min length	D	E	L	Т	М	0		
V		P									Max length								
											Min length	D	Е	L	Т	М	0		
V		P									Max length								
											Min length	D	Е	L	Т	М	0		
											Max length								
V		Р									Min length	D	E	L	Т	М	0		
											Max length								
V		Р																	
											Min length	D	Е	L	Т	М	0		
	 		.								Max length								
V		Р						_											
KRW: F	Rev/09.26.	18 C	alculatio	n:	QC1 +	Entry	QC :	ıα	C 2										

Attachment 4. IDEM Fish Collection Data Sheet (back)

Event ID	_				Page		of	
		Min length	D	Е	L	Т	М	0
		Max length						
V P		IVIAX IEIIgui						
	1	Min length	D	Е	L	Т	M	0
VP		Max length						
	1	Min length		_		_		_
		-	D	E	L	Т	M	0
		Max length						
V P								
		Min length	D	Е	L	T	М	0
]	May layeth						
V P		Max length						
		Min length	D	Е	L	Т	М	0
		+						
		Max length						
V P	1	Min length						
	<u> </u>	Willinength	D	Е	L	T	М	0
		Max length						
V P								
		Min length	D	Е	L	Т	М	0
]						
V P		Max length						
		Min length	D	Е	L	Т	M	0
	<u></u>	_		_	_	•		
		Max length						
V P P KRW: Rev/09.26.18								

KRW: Rev/09.26.18

Attachment 5. IDEM OWQ Biological Qualitative Habitat Evaluation Index (front)

IDEM		OWQ Bi	ological QHE	I (Qualitat	tive Habitat	Evaluation	Index)		
	Sample #		bioSample #	# Stre	eam Name		Location		
-									
1	Surveyor	Sample Date	County	Macro S	ample Type	☐ Habitat Complete	QHEI Sco	ore:	
			<u> </u>				-		
1] <i>SU</i>		eck ONLY Two p d check every ty	redominant substra pe present	ite TYPE BOXES		Check ONE (Or	2 & average)		
PREDOMIN	BEST TYPES		OTHER T	YPES PRESENT		IGIN	QUALI		
	SLDR/SLABS[16	P/G R/R	□□ HARDPAN	P/G R/R	□ LIME	STONE[1]	S□ HEAVY[I□ MODERA	-2] ATF [-1]	
	BOULDER [9]	" ==	□ □ DETRITUS		□ WETL	ANDS[0]	- □ NORMA	L[0]	Substrate
	COBBLE [8] Gravel [7]		□□ MUCK[2]		☐ HARD		_' □ FREE[1]	<u> </u>	
	SAND[6]	55	□□ SILT[2] □□ ARTIFICIA			STONE[0] RAP[0]	EXTENS	IVE [-2]	
	BEDROCK [5]	☐ ☐ (Score n	atural substrates; ignore	sludge from point-			☐ MODER	_	
NUMB	BER OF BEST	TYPES: 40	r more [2] or less [0]		□ SHAL	E[-1] .fines[-2]	NORMAI		Maximum 20
Comn	nents		riess [0]		L COAL	11413[-2]	§ L. MONECI	-1	20
			resence 0 to 3: 0-						
_			s, but not of highes r amounts (e.g., ve				Check ONE	10UNT	(ancre
			ed root wad in deep				□ EXTENSIVE		
pools.)		- Fe1		. [2]			□ MODERATE		
	NDERCUT BANK VERHANGING V	S[1] EGETATION[1]	POOLS > 70		XBOWS, BACKWA' DUATIC MACROPH		☐ SPARSE 5 -		
SH	KALLOWS (IN SL	OW WATER)[1			OGS OR WOODY D			Cover	
RO	OOTMATS[1]							Maximum	
Comn	nents							20	
3] CH	ANNEL MO	RPHOLOGY	Check ONE in each	category (Or 2 8	k average)				
	OSITY		OPMENT	CHANNEL	IZATÍÓN	STABI			
☐ HIG	DERATE[3]	□ 6000	LLENT[7] D[5]	□ NONE[6] □ RECOVER	ED[4]	☐ HIGH	H[3] XERATE[2]	Channel	
□ LO\	N [2]	□ FAIR	[3]	□ RECOVER	ING[3]	□ LOW		Maximum	
Comn		□ POOF	([1]	□ RECENTO	R NO RECOVERY	1]		20	\Box
		N AND DID	ADTAN ZONE	Last ONE is a	h	TI BANK (O. 3.			
	er right looking downs	tream LR RIF	A <i>RIAN ZONE</i> (P ARIAN WI DT	neck ONE in each	OD PLAIN OU	A I TTV	er bank & average; LR)	
L R	EROSION		E > 50m [4]		ST, SWAMP [3]		CONSERVAT	TONTILL	AGE[1]
	NONE/LITTLE [3		DERATE 10-50m [3		BOROLD FIELD [URBANORI		
	Moderate [2] Heavy/Severe		ROW 5-10m [2]		JENITAL, PARK, NI ED PASTURE [1]		□ □ MINING /C C te predominant lan		ION [0]
		□□ NON			PASTURE, ROWC	ROP[0] past 1	00m riparian.	Riparian	
Comn	nents							Maximum 10	Щ
		AND RIFFLE	RUN QUALIT	Y				10	
	IMUM DEP		NNEL WIDTH		CURRENT VE			eation Pote	
	k ONE (ONLY!) > 1m [6]	_	NE (Or 2 & average VIDTH > RIFFLE W		Check ALL th TORRENTIAL [-1]		(Check one □ p	and comme rimary C	
).7-<1m[4]	□ POOLV	VIDTH = RIFFLE W	IDπH[1] □	VERY FAST [1]	■ INTERSTIT	TAL[-1] 🗆 S	econdary	
_),4-<0.7m[2]),2-<0.4m[1]	□ POOLV	VIDTH < RIFFLE W		FAST [1] MODERATE [1]	☐ INTERMIT ☐ EDDIES [1]		Pool/ Current	
	< 0.2m [0] [mel	nic=0]			Indicate for reach –			Maximum	
Comn								12	
	cate for function ffle-obligate spe		eas must be large e	nough to suppo		Or 2 & average)	□ NORIFE	LEÍmebio	= 01
	LE DEPTH		DEPTH	RIFFLE/R	JN SUBSTRAT		FFLE/RUN EM		_
			GMUM > 50cm [2]				NONE[2]		
	STAREASS-10		@MUM < 50am [1]	☐ UNSTABI	BLE (e.g., Large Gr E (e.g., Fine Gravel,	avei)[1] □ Sand)[0] □	LOW [1] MODERATE [0]	Riffle/ Run	
	_			_ 3.1317400	(-31 · biard)		EXTENSIVE [-1]		
61 GR	nents PADIENT (@ Joseph	□ VERVIOW	-LOW[2-4]	%POOL:	%GL	IDE:	Compliance 8	
אט נט	ADILIAI (ft/mi)	☐ MODERATI		70F OOL:			Gradient Maximum	
DR	RAINAGE AR	REA (mi²			%RUN:	%RIF	FLE:	10	Ш
Entered .		QC1		QC2				IDEM	02/01/2023

Attachment 5 (cont.). IDEM OWQ Biological QHEI (back)

IDEM (COMMENT		owe	Q Biological	QHEI (Quali	tative Ha	bitat Evaluation Index)	
A-CANOPY	<u>'</u>	B-AESTHETIC	<u>cs</u>		C-RECRE	ATION	D-MAINTENANCE	E-ISSUES
□ >85%-0	Open	□ Nuisance alga	e 🗆 Oils	heen	Area	Depth	☐ Public ☐ Private	□WWTP □CSO □NPDES
□ 55%-<8	15%	☐ Invasive macr	ophytes 🗆 Tras	sh/Litter	Pool: $\square > 100 \text{ft}^2$	□>3ft	☐ Active ☐ Historic	☐ Industry ☐ Urban
□ 30%-<5	5%	☐ Excess turbidit	ty 🗆 Nuis	sance odor			Succession: ☐ Young ☐ Old	☐ Hardened ☐ Dirt & Grime
□ 10%-<3	0%	 Discoloration 	☐ Sluc	lge deposits			□ Spray □ Islands □ Scoured	□ Contaminated □ Landfill
□ <10%-C	dosed	☐ Foam/Scum	□ csc	os/SSOs/Outfalls			Snag: ☐ Removed ☐ Modified	BMPs: □ Construction □ Sediment
							Leveed: ☐ One sided ☐ Both banks	☐ Logging ☐ Irrigation ☐ Cooling
Looking upstream	n (> 10m, 3 rea	dings; \leq 10m, 1 reading	in middle); Round	I to the nearest w	hole percent		□ Relocated □ Cutoffs	Erosion: ☐ Bank ☐ Surface
	Right	Middle	Left	Total Averag	e		Bedload: ☐ Moving ☐ Stable	☐ False bank ☐ Manure ☐ Lagoon
% open	%	%	%	%			□ Armoured □ Slumps	□ Wash H ₂ O □ Tile □ H ₂ O Table
							☐ Impounded ☐ Desiccated	Mine: □ Acid □ Quarry
	\ /	\ /	\ /				□ Flood control □ Drainage	Flow: Natural Stagnant
								□ Wetland □ Park □ Golf
				Str	eam Width (m):			☐ Lawn ☐ Home
		/ \		541	cam widen (m).			☐ Atmospheric deposition
								☐ Agriculture ☐ Livestock
Stream D	rawing:							

IDEM 02/01/2023

Attachment 6. IDEM OWQ Field Chain of Custody Form

Indiana Department of Environmental Management OWQ Chain of Custody Form

Project:	
OWQ Sample Set or Trip #:	

Revision Date: 4/27/2016

											OWQ Sa	ample Set or Trip	#:
Certify that the s	ample(s) liste	d below	was/w	ere colle	cted by	me, or	in my p	resence	. D	ate:			
Signature:									90	ction:			
Sample Media (□	Water. □ Alga	e.□ Fish	n. 🗆 Ma	acro. 🗆	Cvanob	acteria/l	Microcv	stin. 🗆					_
Lab	774.tor, <u>—</u> 74.ga		,	,	Janes						Date and T	ime Collected	
Assigned	IDEM	Sample Type	ID	ΞΞ	E Z	40 ml Vial	120 ml P (Bact)	2000 ml Nalgene	250 ml Nalgene	125 ml Glass	Date and 1	illie Collected	One chec
Number / Event ID	Control Number	Sar		1000 ml P.N.M.	1000 ml G.N.M.	04 >	12 P (200 Nal	25 Nal	12 GI	Date	Time	present
P = Plastic	G = Glass	N.I	M. = Na	arrow Mo	outh	Bact =	Bacter	iologica	l Only	S	hould sample	s be iced?	YN
M = MS/MSD	B = Blank	D:	= Dupli	cate		R = R	evisit						
						Ca	arriers						
certify that I have	e received the	above sa	ample(s).					_				
Dalla and all Dan	Signatu	re				Date		Time	Sea	ls Intact		Comments	
Relinquished By:									Y	N			
Received By:													
Relinquished By:									Y	N			
Received By:													
Relinquished By:									Y	N			
Received By: IDEM Storage Ro	om #				_		_						
DEW Storage Ro	viii #												
l certify that I hav custody of compe							n recor	ded in t	he offici	al record	book. The sa	me sample(s) wi	II be in the
Signature:						_		D	ate:		Ti	me:	
Lab:							Δda	dress:					

48

Attachment 7. IDEM Corvallis Water Sample Analysis Request Form (Pace Analytical)

IDEM	Office of Watershe		ity and Asse	essment Br	anch Monito	Water Sample Analy	_	PRO	OFILE #28	4
OWQ Sample Set	24W	/QW012			ID	EM Sample Nos.				
Crew Chief					La	ab Sample Nos.				
Collection Date						ab Delivery Date				
Anions and Physic			ı la:			Organic Water Par	rameters	T = .		17.1
Parameter	Test Meth			ssolved		Parameter		Tes	t Method	Total
Alkalinity (as CaCO ₃) Total Solids	SM2320B SM2540B	⊠ ⊠	**			Priority Pollutants: Oranochlorine Pestici PCBs	des and	608		
Suspended Solids	SM2540D	\boxtimes				Priority Pollutants: V	nre -			
Dissolved Solids	SM2540C			⊠ **		Purgeable Organics	0.00	624		
Sulfate (as SO ₄)	300.0			⊠ **		Priority Pollutants:				
Chloride (as CI)	300.0		**	⊠ **		Base/Neutral Extractables				
Hardness (Calculated)	SM-2340B	×		**		Priority Pollutants: Acid				
Fluoride (as F)	SM4500-F-0		**	**		Extractables			_	
Priority Pollutant M	etals Wate	r Param	eters			Phenolics, 4AAP		420.		
Parameter	Test Meth	od Tota	ıl Dis	ssolved		Oil and Grease, Total		1664	4A	
Antimony (as Sb)	200.8		1	×		Nutrient & Organi	c Water C	hemis	stry Para	meters
Arsenic (as As)	200.8		1	\boxtimes		Parameter	thod	Total	Dissolve	
Beryllium (as Be)	200.8]			Ammonia Nitrogen	350.1			П
Cadmium (as Cd)	200.8	\boxtimes		\boxtimes		CBOD ₅	SM5210E	3		
Chromium (as Cr)	200.8			\boxtimes		Total Kjeldahl	351.2			
Copper (as Cu)	200.8	\boxtimes		\boxtimes		Nitrogen (TKN)	331.2			
Lead (as Pb)	200.8	×		\boxtimes		Nitrogen, Nitrate +	353.2			
Mercury, Low Level	1631, Rev		-			Nitrite as N				
Nickel (as Ni)	200.8	×		\boxtimes		Total Phosphorus	365.1		×	
Selenium (as Se)	200.8	×		\boxtimes		TOC (Total Organic Carbon)				
Silver (as Ag)	200.8	×	_			DOC (Dissolved Organic Carbon	410.4		M	
Thallium (as TI)	200.8		-			Cyanide (Total)	335.4			
Zinc (as Zn)	200.8	×	1	\boxtimes		Cyanide (Free)	SM45000	- I-IA	⊠ *	H
Cations and Second	lary Metals	Parame	ters			Cyanide (Amenable)	SM45000		⊠ *	
Parameter	Test M	ethod	Total	Dissolv	ed	Sulfide, Total	376.2			H
Aluminum (as Al)	200.8		×	×		Sumue, Total	310.2			
Barium (as Ba)	200.8					RFP 22-68153	58463 (P	ace-Ir	ndy)	
Boron (as B)	200.8			1 4		Contract Number:	PO#200	03041	l Line #7 (l	Pace-Indy)
Calcium (as Ca)	200.7		⊠ ***	_		30 day reporting tir	no roquiro	d		
Cobalt (as Co)	200.8		님			Notes:	ne require	u.		
Iron (as Fe)	200.7			 		Notes: ** = DO NOT RUN	ΡΔΡΔΜΕΤ	FR IC	SAMPLE	F
Magnesium (as Mg)	200.7		⊠ ***			IDENTIFIED				
Manganese (as Mn) Sodium (as Na)	200.8					CUSTODY	A DEF			
oudum (as Na)	200.7				* = RUN ONLY IF TOTAL CYANIDE IS DETECTED					
Silica, Total Reactive (as SiC	200.7					*** = Report Calcium				

2525 North Shadeland Ave. Indianapolis, IN 46219

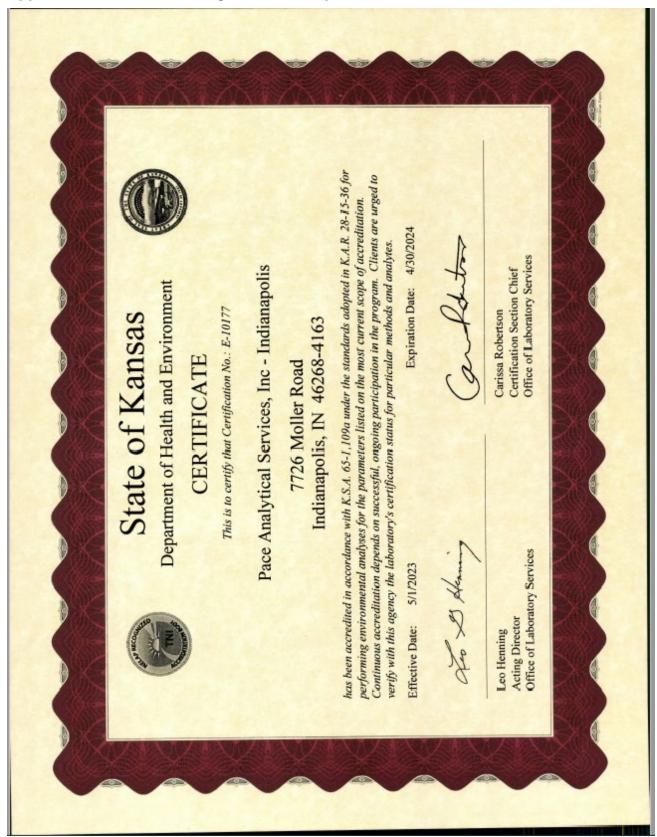
2525 North Shadeland Ave. Indianapolis, IN 46219

Attn: Olivia Deck Phone: 317-228-3102 7726 Moller Road

Indianapolis, IN 46268

Attachment 8. IDEM OWQ Biological Samples Laboratory Chain of Custody Form

INDIANA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT OFFICE OF WATER QUALITY BIOLOGICAL SAMPLES


LABORATORY CHAIN OF CUSTODY

ROOM#

By placing your initials below, you are certifying that the sample(s) listed below was/were processed by you or in your presence in the processing room noted below and returned to the noted storage room.

Sample Type AD = Algae Diatom AS = Algae, Soft F = fish	Event ID or Macro #	IDEM Sample #	# of 2000 mL Nalgene Jar	# of 250 mL Nalgene Jar	# of 125 mL Glass Jar	Removed from Storage for Processing		Storag Proces	ge for	Processing Room #	als	Placed in after Pro	Storage ocessing	Storage Room #	sla	# of Olive Voucher Jars	# of Slides	# of Close Top Test Tubes	Sample Split P = Permanent T = Temporary
M = macro	(YY) or	(AB)	# of Nalg	# of Nalg	# of Glas	Date (mm/dd/yyyy)	Time (24hr)	Proc	Initials	Date (mm/dd/yyyy)	Time (24hr)	Stora	Initials	# of Non	# of	# of Test	1 - Temporary		
							:				:								
							:				:								
							:				:								
							:				:								
							:				:								
							:				:								
							:				:								
							:				:								
							:				:								
							:				:								
							:				:								
							:				:								
							:				:								
							:				:								
							:				:								
							:				:								
							:				:								
							:				:								
							:				:								
							:				:								
							:				:								
Lab: <u>Indiana Depart</u>	ment of Environmen	tal Management					Address: 2	525 N. S	hadeland	Ave., Labora	tory Room 1	21, 124,	125, Ind	ianapo	lis, IN	46219	<u>)</u>		

Appendix 1. Pace Laboratory Inc., Indianapolis: Accreditation Documents

Division of Environment Kansas Health and Environmental Laboratories Environmental Laboratory Improvement Program 6810 SE Dwight Street Topeka, KS 66620

Phone: 785-296-3811 Fax: 785-559-5207 KDHE.ELIPO@KS.GOV www.kdheks.gov/envlab

Janet Stanek, Secretary

Laura Kelly, Governor

The Kansas Department of Health and Environment encourages all clients and data users to verify the most current scope of accreditation for certification number E-10177

The analytes tested and the corresponding matrix and method which a laboratory is authorized to perform at any given time will be those indicated in the most recently issued scope of accreditation. The most recent scope of accreditation supersedes all previously issued scopes of accreditation. It is the certified laboratory's responsibility to review this document for any discrepancies. This scope of accreditation will be recalled in the event that your laboratory's certification is revoked.

Accreditation Start: 5/1/2023 Accreditation End: 4/30/2024

EPA Number: IN00043	Scope of Accreditation for Certification Number: E-101	77 Page 1 of 26
Pace Analytical Services, Inc - Indiana	apolis	Primary AB
Program/Matrix: CWA (Non Potable	Water)	
Method ASTM D516-16		
Sulfate		KS
Method EPA 120.1		
Conductivity		KS
Method EPA 1631E		***
Mercury		KS
Method EPA 1664A Oil & Grease		KS
Method EPA 1664A (SGT-HEM)		Ko
n-Hexane Extractable Material - Sili	ica Gel Treated (HEM-SGT)	KS
Method EPA 180.1 Rev. 2 - 1993		
Turbidity		KS
Method EPA 200.7 Rev 4.4		
Aluminum		KS
Antimony		KS
Arsenic		KS
Barium		KS
Beryllium		KS
Boron		KS
Cadmium		KS
Calcium		KS
Chromium		KS
Cobalt		KS
Copper		KS KS
Copper		
Iron		KS
Kansas Department of Health Matthew of International Confessions	Kansas Department of Health and Environment Kansas Health Environmental Laboratories 6810 SE Dwight Street, Topeka, KS 66620	TNI

EPA Number: IN00043	Scope of Accreditation for Certification Number:	E-10177	Page 2 of 26
Pace Analytical Services, Inc - l	Indianapolis		Primary AB
Program/Matrix: CWA (Non Po	otable Water)		
Lead			KS
Magnesium			KS
Manganese			KS
Molybdenum			KS
Nickel			KS
Potassium			KS
Selenium			KS
Silver			KS
Sodium			KS
Strontium			KS
Thallium			KS
Tin			KS
Titanium.			KS
Vanadium			KS
Zinc			KS
Method EPA 200.8 Rev 5.4			
Aluminum			KS
Antimony			KS
Arsenic			KS
Barium			KS
Beryllium			KS
Boron			KS
Cadmium			KS
Chromium			KS
Cobalt			KS
Copper			KS
Lead			KS
Manganese			KS
Molybdenum Nickel			KS
			KS
Selenium			KS
Silver Thallium			KS KS
Tin			KS
Titanium			KS
Vanadium			KS
Zinc			KS
Method EPA 245.1			123
			Tre.
Mercury			KS
Method EPA 300.0			***
Bromide			KS
Chloride			KS
Fluoride			KS
Nitrate			KS
Nitrate plus Nitrite as N			KS KS
Nitrite			
	Variate Department of Health and Environment		STAT SECOCAL

EPA Number: IN00043 Scope of Accreditation for Certification Number: E-10177	Page 3 of 26
Pace Analytical Services, Inc - Indianapolis	Primary AB
Program/Matrix: CWA (Non Potable Water)	
Sulfate	KS
Method EPA 335.4	
Amenable cyanide	KS
Cyanide	KS
Method EPA 350.1	
Ammonia as N	KS
Method EPA 351.2	
Total Kjeldahl Nitrogen (TKN)	KS
Method EPA 351.2 minus EPA 350.1	
Organic nitrogen	KS
Method EPA 353.2	
Nitrate	KS
Nitrate plus Nitrite as N	KS
Nitrite	KS
Method EPA 365.1	
Phosphorus	KS
Method EPA 410.4	
Chemical oxygen demand	KS
Method EPA 420.4	
Total phenolics	KS
Method EPA 6010B	
Arsenic	KS
Cadmium	KS
Copper	KS
Lead	KS
Molybdenum	KS
Nickel	KS
Selenium	KS
Strontium Total chromium	KS
Zinc	KS KS
Method EPA 6020	12.5
Arsenic	KS
Cadmium	KS
Copper	KS
Lead	KS
Nickel	KS
Selenium	KS
Total chromium	KS
Zinc	KS
Method EPA 608.3 GC-ECD	
4,4'-DDD	KS
4,4'-DDE	KS
4,4'-DDT	KS

EPA Number: IN00043 Scope of Accreditation for Certification Number: E-10177 Page 4 of 26

ace Analytical Services, Inc - Indianapolis	Primary AB
rogram/Matrix: CWA (Non Potable Water)	
Aldrin	KS
alpha-BHC (alpha-Hexachlorocyclohexane)	KS
Aroclor-1016 (PCB-1016)	KS
Aroclor-1221 (PCB-1221)	KS
Aroclor-1232 (PCB-1232)	KS
Aroclor-1242 (PCB-1242)	KS
Aroclor-1248 (PCB-1248)	KS
Aroclor-1254 (PCB-1254)	KS
Aroclor-1260 (PCB-1260)	KS
beta-BHC (beta-Hexachlorocyclohexane)	KS
Chlordane (tech.)(N.O.S.)	KS
delta-BHC	KS
Dieldrin	KS
Endosulfan I	KS
Endosulfan II	KS
Endosulfan sulfate	KS
Endrin	KS
Endrin aldehyde	KS
gamma-BHC (Lindane, gamma-HexachlorocyclohexanE)	KS
Heptachlor	KS
Heptachlor epoxide	KS
Methoxychlor	KS
Toxaphene (Chlorinated camphene)	KS
fethod EPA 624.1	
1,1,1-Trichloroethane	KS
1,1,2,2-Tetrachloroethane	KS
1,1,2-Trichloroethane	KS
1,1-Dichloroethane	KS
1,1-Dichloroethylene	KS
1,2-Dichlorobenzene (o-Dichlorobenzene)	KS
1,2-Dichloroethane (Ethylene dichloride)	KS
1,2-Dichloropropane	KS
1,3-Dichlorobenzene	KS
1,4-Dichlorobenzene	KS
2-Chloroethyl vinyl ether	KS
Acrolein (Propenal)	KS
Acrylonitrile	KS
Benzene	KS
Bromodichloromethane	KS
Bromoform	KS
Carbon tetrachloride	KS
Chlorobenzene	KS
Chlorodibromomethane	KS
Chloroethane (Ethyl chloride)	KS
Chloroform	KS
cis-1,3-Dichloropropene	KS

EPA Number: IN00043 Scope of Accreditation for Certification Number: E-10177 Page 5 of 26

Pace Analytical Services, Inc - Indianapolis	Primary AB
Program/Matrix: CWA (Non Potable Water)	
Ethylbenzene	KS
Methyl bromide (Bromomethane)	KS
Methyl chloride (Chloromethane)	KS
Methylene chloride (Dichloromethane)	KS
Naphthalene	KS
Tetrachloroethylene (Perchloroethylene)	KS
Toluene	KS
trans-1,2-Dichloroethylene	KS
trans-1,3-Dichloropropylene	KS
Trichloroethene (Trichloroethylene)	KS
Trichlorofluoromethane (Fluorotrichloromethane, Freon 11)	KS
Vinyl chloride	KS
Xylene (total)	KS
Method EPA 625.1	
1,2,4-Trichlorobenzene	KS
1,2-Dichlorobenzene (o-Dichlorobenzene)	KS
1.3-Dichlorobenzene	KS
1.4-Dichlorobenzene	KS
2,2'-Oxybis(1-chloropropane), bis(2-Chloro-1-methylethyl)ether	KS
2,4,6-Trichlorophenol	KS
2.4-Dichlorophenol	KS
2,4-Dimethylphenol	KS
2,4-Dinitrophenol	KS
2.4-Dinitrotoluene (2.4-DNT)	KS
2,6-Dinitrotoluene (2,6-DNT)	KS
2-Chloronaphthalene	KS
2-Chlorophenol	KS
2-Methyl-4,6-dinitrophenol (4,6-Dinitro-2-methylphenol)	KS
2-Methylphenol (o-Cresol)	KS
2-Nitrophenol	KS
3,3'-Dichlorobenzidine	KS
4-Bromophenyl phenyl ether	KS
4-Chloro-3-methylphenol	KS
4-Chlorophenyl phenylether	KS
4-Methylphenol (p-Cresol)	KS
4-Nitrophenol	KS
Acenaphthene	KS
Acenaphthylene	KS
Anthracene	KS
Benzidine	KS
Benzo(a)anthracene	KS
Велго(а)ругеле	KS
Benzo(b)fluoranthene	KS
Benzo(g,h,i)perylene	KS
Benzo(k)fluoranthene	KS
bis(2-Chloroethoxy)methane	KS

EPA Number: IN00043 Page 6 of 26 Scope of Accreditation for Certification Number: E-10177 Pace Analytical Services, Inc - Indianapolis Primary AB Program/Matrix: CWA (Non Potable Water) bis(2-Chloroethyl) ether KS Butyl benzyl phthalate KS Carbazole KS Chrysene KS Di(2-ethylhexyl) phthalate (bis(2-Ethylhexyl)phthalate, DEHP) KS Dibenz(a,h) anthracene KS Diethyl phthalate KS Dimethyl phthalate KS Di-n-butyl phthalate KS Di-n-octyl phthalate KS Fluoranthene KS Fluorene KS Hexachlorobenzene KS Hexachlorobutadiene KS Hexachlorocyclopentadiene KS Hexachloroethane KS Indeno(1,2,3-cd) pyrene KS Isophorone KS Naphthalene KS n-Decane KS Nitrobenzene KS n-Nitrosodimethylamine KS KS n-Nitrosodi-n-propylamine KS n-Nitrosodiphenylamine KS n-Octadecane Pentachlorophenol KS Phenanthrene KS Phenol KS KS Pyrene Method EPA 7470A Mercury KS Method EPA 7471A KS Mercury Method EPA 8015D Propylene glycol KS Method EPA 8260C 1,3,5-Trichlorobenzene KS Method EPA 8270C 1-Methylnaphthalene KS Carbazole KS Method SM 2310 B-2011 Acidity, as CaCO3 KS Method SM 2320 B-2011 Alkalinity as CaCO3 KS Method SM 2340 B-2011 Kansas Department of Health and Environment Kansas Health Environmental Laboratories 6810 SE Dwight Street, Topeka, KS 66620

Page 7 of 26 EPA Number: IN00043 Scope of Accreditation for Certification Number: E-10177 Pace Analytical Services, Inc - Indianapolis Primary AB Program/Matrix: CWA (Non Potable Water) Hardness KS Method SM 2510 B-2011 Conductivity KS Method SM 2540 B-2015 Residue-total KS Method SM 2540 C-2015 Residue-filterable (TDS) KS Method SM 2540 D-2015 Residue-nonfilterable (TSS) KS Method SM 2540 F-2015 Residue-settleable KS Method SM 3500-Cr B-2011 Chromium VI KS Method SM 4500-C1 G-2011 Total residual chlorine KS Method SM 4500-Cl E-2011 Chloride KS Method SM 4500-CN C-2016 Cyanide KS Method SM 4500-CN E-2016 Cyanide KS Method SM 4500-CN G-2016 Amenable cyanide KS Method SM 4500-F C-2011 Fluoride KS Method SM 4500-H+ B-2011 pН KS Method SM 4500-NH3 G-2011 Ammonia as N KS Method SM 4500-P E-2011 Orthophosphate as P KS Method SM 4500-S2 D-2011 Sulfide KS Method SM 5210 B-2016 Biochemical oxygen demand KS Carbonaceous BOD, CBOD KS Method SM 5310 C-2014 Total organic carbon KS Method SM 5540 C-2011 Surfactants - MBAS KS Method TKN-NH3-CAL KS Organic nitrogen

EPA Number: IN00043	Scope of Accreditation for Certification Number:	E-10177	Page 8 of 26
Pace Analytical Services, I	Inc - Indianapolis	Prim	ary AB
Program/Matrix: RCRA (Non Potable Water)		
Method EPA 1010A			
Ignitability		KS	
Method EPA 1311			
Toxicity Characteristic	Leaching Procedure (TCLP)	KS	
Method EPA 1312			
Synthetic Precipitation	Leaching Procedure (SPLP)	KS	
Method EPA 6010B			
Aluminum		KS	
Antimony		KS	
Arsenic		KS	
Barium		KS	
Beryllium		KS	
Boron Cadmium		KS KS	
Calcium		KS	
Chromium		KS	
Cobalt		KS	
Copper		KS	
Iron		KS	
Lead		KS	
Lithium		KS	
Magnesium		KS	
Manganese		KS	
Molybdenum		KS	
Nickel		KS	
Potassium		KS	
Selenium		KS	
Silicon		KS	
Silver Sodium		KS KS	
Strontium		KS	
Thallium		KS	
Tin		KS	
Titanium		KS	
Vanadium		KS	
Zinc		KS	
Method EPA 6020			
Aluminum		KS	
Antimony		KS	
Arsenic		KS	
Barium		KS	
Beryllium		KS	
Cadmium		KS	
Chromium		KS	
Cobalt		KS KS	
Copper		6.4	AP MECOGA
Kansas Department of Health and Environment Manufacture of Contractions	Kansas Department of Health and Environment Kansas Health Environmental Laboratories 6810 SE Dwight Street, Topeka, KS 66620		TNI

EPA Number: IN00043 Scope of Accreditation for Certification Number: E-10177	Page 9 of 26
Pace Analytical Services, Inc - Indianapolis	Primary AB
Program/Matrix: RCRA (Non Potable Water)	
Lead	KS
Manganese	KS
Molybdenum	KS
Nickel	KS
Selenium	KS
Silver	KS
Thallium	KS
Thorium	KS
Uranium	KS
Vanadium	KS
Zinc	KS
Method EPA 7196A	
Chromium VI	KS
Method EPA 7470A	
Mercury	KS
Method EPA 7471A	
Mercury	KS
Method EPA 8011	
1,2-Dibromo-3-chloropropane (DBCP)	KS
1,2-Dibromoethane (EDB, Ethylene dibromide)	KS
Method EPA 8015D	
Diesel range organics (DRO)	KS
Ethanol	KS
Ethylene glycol	KS
Gasoline range organics (GRO)	KS
Isobutyl alcohol (2-Methyl-1-propanol)	KS
Isopropyl alcohol (2-Propanol, Isopropanol)	KS
Methanol	KS
n-Butyl alcohol (1-Butanol, n-Butanol)	KS
n-Propanol (1-Propanol)	KS
Propylene glycol	KS
Method EPA 8081B	
4.4'-DDD	KS
4,4'-DDE	KS
4,4'-DDT	KS
Aldrin	KS
alpha-BHC (alpha-Hexachlorocyclohexane)	KS
alpha-Chlordane, cis-Chlordane	KS
beta-BHC (beta-Hexachlorocyclohexane)	KS
Chlordane (tech.)(N.O.S.)	KS
delta-BHC	KS
Dieldrin	KS
Endosulfan I	KS
Endosulfan II	KS
Endosulfan sulfate	KS

EPA Number: IN00043 Scope of Accreditation for Certification Number: E-10177	Page 10 of 26	
Pace Analytical Services, Inc - Indianapolis	Primary AB	
Program/Matrix: RCRA (Non Potable Water)		
Endrin	KS	
Endrin aldehyde	KS	
Endrin ketone		
gamma-BHC (Lindane, gamma-HexachlorocyclohexanE)		
gamma-Chlordane	KS	
Heptachlor	KS	
Heptachlor epoxide	KS	
Methoxychlor	KS	
Toxaphene (Chlorinated camphene)	KS	
Method EPA 8082A		
Aroclor-1016 (PCB-1016)	KS	
Aroclor-1221 (PCB-1221)	KS	
Aroclor-1232 (PCB-1232)	KS	
Aroclor-1242 (PCB-1242)	KS	
Aroclor-1248 (PCB-1248)	KS	
Aroclor-1254 (PCB-1254)	KS	
Aroclor-1260 (PCB-1260)	KS	
Method EPA 8141B		
Atrazine	KS	
Azinphos-methyl (Guthion)	KS	
Chlorpyrifos	KS	
Chlorpyrifos-methyl	KS	
Demeton-o	KS	
Demeton-s	KS	
Diazinon	KS	
Dichlorovos (DDVP, Dichlorvos)	KS	
Dimethoate	KS	
Disulfoton	KS	
Famphur	KS	
Malathion	KS	
Merphos	KS	
Methyl parathion (Parathion, methyl)	KS	
Naled	KS	
Parathion, ethyl	KS	
Phorate	KS	
Ronnel	KS	
Simazine	KS	
Terbufos	KS	
Tetrachlorvinphos (Stirophos, Gardona) E-isomer	KS	
Method EPA 8151A		
2.4.5-T	KS	
2,4-D	KS	
2.4-DB	KS	
3,5-Dichlorobenzoic acid	KS	
Acifluorfen	KS	
Bentazon	KS	
	WALL SECONAL	

EPA Number: IN00043 Scope of Accreditation for Certification Number:	E-10177 Page 11 of 26
Pace Analytical Services, Inc - Indianapolis	Primary AB
Program/Matrix: RCRA (Non Potable Water)	-
Dalapon	KS
DCPA di acid degradate	KS
Dicamba	KS
Dichloroprop (Dichlorprop)	KS
Dinoseb (2-sec-butyl-4,6-dinitrophenol, DNBP)	KS
MCPA	KS
MCPP	KS
Pentachlorophenol	KS
Picloram	KS
Silvex (2,4,5-TP)	KS
Method EPA 8260C	
1,1,1,2-Tetrachloroethane	KS
1,1,1-Trichloroethane	KS
1,1,2,2-Tetrachloroethane	KS
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	KS
1,1,2-Trichloroethane	KS
1,1-Dichloroethane	KS
1,1-Dichloroethylene	KS
1,1-Dichloropropene	KS
1,2,3-Trichlorobenzene	KS
1,2,3-Trichloropropane	KS
1,2,4-Trichlorobenzene	KS
1,2,4-Trimethylbenzene	KS
1,2-Dibromo-3-chloropropane (DBCP)	KS
1,2-Dibromoethane (EDB, Ethylene dibromide)	KS
1,2-Dichlorobenzene (o-Dichlorobenzene)	KS
1,2-Dichloroethane (Ethylene dichloride)	KS
1,2-Dichloropropane	KS
1,3,5-Trichlorobenzene	KS
1,3,5-Trimethylbenzene	KS
1,3-Dichlorobenzene	KS
1,3-Dichloropropane	KS
1,4-Dichlorobenzene	KS
1,4-Dioxane (1,4- Diethyleneoxide)	KS
l-Methylnaphthalene	KS
2,2-Dichloropropane	KS
2-Butanone (Methyl ethyl ketone, MEK)	KS
2-Chloroethyl vinyl ether	KS
2-Chlorotoluene	KS
2-Hexanone	KS
2-Methylnaphthalene	KS
4-Chlorotoluene	KS
4-Isopropyltoluene (p-Cymene,p-Isopropyltoluene)	KS
4-Methyl-2-pentanone (MIBK)	KS
Acetone	KS
Acetonitrile	KS

EPA Number: IN00043 Page 12 of 26 Scope of Accreditation for Certification Number: E-10177 Pace Analytical Services, Inc - Indianapolis Primary AB Program/Matrix: RCRA (Non Potable Water) Acrolein (Propenal) KS Acrylonitrile KS Allyl chloride (3-Chloropropene) KS Benzene KS Bromobenzene KS Bromochloromethane KS Bromodichloromethane KS Bromoform KS Carbon disulfide KS Carbon tetrachloride KS Chlorobenzene KS Chlorodibromomethane KS Chloroethane (Ethyl chloride) KS Chloroform KS Chloroprene (2-Chloro-1,3-butadiene) KS cis-1,2-Dichloroethylene KS cis-1,3-Dichloropropene KS Cyclohexane KS Dibromomethane (Methylene bromide) KS Dichlorodifluoromethane (Freon-12) KS Diethyl ether KS Ethyl acetate KS Ethyl methacrylate KS Ethylbenzene KS Hexachlorobutadiene KS Iodomethane (Methyl iodide) KS Isobutyl alcohol (2-Methyl-1-propanol) KS Isopropylbenzene KS Methacrylonitrile KS Methyl acetate KS Methyl bromide (Bromomethane) KS Methyl chloride (Chloromethane) KS Methyl methacrylate KS Methyl tert-butyl ether (MTBE) KS Methylcyclohexane KS Methylene chloride (Dichloromethane) KS m-Xylene KS Naphthalene KS n-Butyl alcohol (1-Butanol, n-Butanol) KS n-Butylbenzene KS n-Hexane KS n-Propylbenzene KS o-Xylene KS Propionitrile (Ethyl cyanide) KS p-Xylene KS sec-Butylbenzene KS Styrene KS Kansas Department of Health and Environment Kansas Health Environmental Laboratories 6810 SE Dwight Street, Topeka, KS 66620

EPA Number: IN00043 Scope of Accreditation for Certification Number: E-10177 Page 13 of 26

ace Analytical Services, Inc - Indianapolis	Primary AB
rogram/Matrix: RCRA (Non Potable Water)	
tert-Butyl alcohol	KS
tert-Butylbenzene	KS
Tetrachloroethylene (Perchloroethylene)	KS
Tetrahydrofuran (THF)	KS
Toluene	KS
trans-1,2-Dichloroethylene	KS
trans-1,3-Dichloropropylene	KS
trans-1,4-Dichloro-2-butene	KS
Trichloroethene (Trichloroethylene)	KS
Trichlorofluoromethane (Fluorotrichloromethane, Freon 11)	KS
Vinyl acetate	KS
Vinyl chloride	KS
Xylene (total)	KS
ethod EPA 8270C	
1,2,4,5-Tetrachlorobenzene	KS
1.2.4-Trichlorobenzene	KS
1,2-Dichlorobenzene (o-Dichlorobenzene)	KS
1,2-Diphenylhydrazine	KS
1,3,5-Trinitrobenzene (1,3,5-TNB)	KS
1,3-Dichlorobenzene	KS
1,3-Dinitrobenzene (1,3-DNB)	KS
1.4-Dichlorobenzene	KS
1,4-Naphthoquinone	KS
1,4-Phenylenediamine	KS
1-Methylnaphthalene	KS
1-Naphthylamine	KS
2,2'-Oxybis(1-chloropropane), bis(2-Chloro-1-methylethyl)ether	KS
2,3,4,6-Tetrachlorophenol	KS
2,4,5-Trichlorophenol	KS
2.4.6-Trichlorophenol	KS
2,4-Dichlorophenol	KS
2.4-Dimethylphenol	KS
2.4-Dinitrophenol	KS
2,4-Dinitrotoluene (2,4-DNT)	KS
2,6-Dichlorophenol	KS
2,6-Dinitrotoluene (2,6-DNT)	KS
2-Acetylaminofluorene	KS
2-Acetyrannhohuorene 2-Chloronaphthalene	KS
2-Chlorophenol	KS
2-Methyl-4,6-dinitrophenol (4,6-Dinitro-2-methylphenol)	KS
2-Methylaniline (o-Toluidine)	KS
2-Methylnaphthalene	KS
2-Methylphenol (o-Cresol)	KS
2-Naphthylamine	KS
2-Nitroaniline	KS
2-Nitrophenol	KS

Page 14 of 26 EPA Number: IN00043 Scope of Accreditation for Certification Number: E-10177 Pace Analytical Services, Inc - Indianapolis Primary AB Program/Matrix: RCRA (Non Potable Water) 2-Picoline (2-Methylpyridine) KS 3,3'-Dichlorobenzidine KS 3,3'-Dimethylbenzidine KS 3-Methylcholanthrene KS 3-Methylphenol (m-Cresol) KS 3-Nitroaniline KS 4-Aminobiphenyl KS 4-Bromophenyl phenyl ether KS 4-Chloro-3-methylphenol KS 4-Chloroaniline KS 4-Chlorophenyl phenylether KS 4-Dimethyl aminoazobenzene KS 4-Methylphenol (p-Cresol) KS 4-Nitroaniline KS 4-Nitrophenol KS 4-Nitroquinoline 1-oxide KS 5-Nitro-o-toluidine KS 7,12-Dimethylbenz(a) anthracene KS a-a-Dimethylphenethylamine KS Acenaphthene KS Acenaphthylene KS Acetophenone KS Aniline KS Anthracene KS KS Aramite Atrazine KS Benzaldehyde KS Benzidine KS Benzo(a)anthracene KS Benzo(a)pyrene KS Benzo(b)fluoranthene KS Benzo(g,h,i)perylene KS Benzo(k)fluoranthene KS Benzoic acid KS Benzyl alcohol KS Biphenyl KS bis(2-Chloroethoxy)methane KS bis(2-Chloroethyl) ether KS Butyl benzyl phthalate KS Caprolactam KS Carbazole KS Chlorobenzilate KS KS Chrysene Di(2-ethylhexyl) phthalate (bis(2-Ethylhexyl)phthalate, DEHP) KS Diallate KS KS Dibenz(a,h) anthracene KS Dibenzofuran Kansas Department of Health and Environment Kansas Health Environmental Laboratories

EPA Number: IN00043	Scope of Accreditation for Certification Number:	E-10177	Page 15 of 26
Pace Analytical Services, Inc - Indiana	apolis	P	rimary AB
Program/Matrix: RCRA (Non Potable	Water)		
Diethyl phthalate		K	S
Dimethoate		K	S
Dimethyl phthalate		K	S
Di-n-butyl phthalate		K	S
Di-n-octyl phthalate		K	S
Diphenylamine		K	S
Disulfoton		K	S
Ethyl methanesulfonate		K	S
Famphur		K	S
Fluoranthene		K	S
Fluorene		K	S
Hexachlorobenzene		K	S
Hexachlorobutadiene		K	S
Hexachlorocyclopentadiene		K	S
Hexachloroethane		K	S
Hexachlorophene		K	S
Hexachloropropene		K	S
Indeno(1,2,3-cd) pyrene			S
Isodrin			S
Isophorone			S
Isosafrole			S
Kepone			S
Methapyrilene			S
Methyl methanesulfonate			S
Methyl parathion (Parathion, methyl	1)		S
Naphthalene			S
Nitrobenzene			S
n-Nitrosodiethylamine			S
n-Nitrosodimethylamine			S S
n-Nitroso-di-n-butylamine n-Nitrosodi-n-propylamine			S.
n-Nitrosodi-h-propylamine			S
n-Nitrosomphenylamine			S
n-Nitrosomernyleinylamme			S
n-Nitrosopiperidine			S
n-Nitrosopyrrolidine			S
o,o,o-Triethyl phosphorothioate			S
Parathion, ethyl			S
Pentachlorobenzene			S
Pentachloronitrobenzene			S
Pentachlorophenol			S
Phenacetin		K	S
Phenanthrene		_	S
Phenol		K	S
Phorate		K	S
p-Phenylenediamine		K	S
Pronamide (Kerb)		K	S
Kansas Deportment of Housth and Environment	Kansas Department of Health and Environment Kansas Health Environmental Laboratories 6810 SE Dwight Street, Topeka, KS 66620		TNI

EPA Number: IN00043 Scope of	Accreditation for Certification Number:	E-10177 Page 16 of 26
Pace Analytical Services, Inc - Indianapolis		Primary AB
Program/Matrix: RCRA (Non Potable Water)		
Pyrene		KS
Pyridine		KS
Safrole		KS
Sulfotep (Tetraethyl dithiopyrophosphate)		KS
Thionazin (Zinophos)		KS
Method EPA 8270C SIM		
1-Methylnaphthalene		KS
2-Methylnaphthalene		KS
Acenaphthene		KS
Acenaphthylene		KS
Anthracene		KS
Atrazine		KS
Azinphos-methyl (Guthion)		KS
Benzo(a)anthracene		KS
Benzo(a)pyrene		KS
Benzo(b)fluoranthene		KS
Benzo(g,h,i)perylene		KS
Benzo(k)fluoranthene		KS
Chlorpyrifos		KS
Chlorpyrifos-methyl		KS
Chrysene		KS
Demeton-o		KS
Demeton-s		KS
Diazinon		KS
Dibenz(a,h) anthracene		KS
Dichlorovos (DDVP, Dichlorvos)		KS
Dimethoate		KS
Disulfoton		KS
Famphur		KS
Fluoranthene		KS
Fluorene		KS
Indeno(1,2,3-cd) pyrene		KS
Malathion		KS
Merphos		KS
Methyl parathion (Parathion, methyl)		KS
Naled		KS
Naphthalene		KS
Parathion, ethyl		KS
Phenanthrene		KS
Phorate		KS
Pyrene		KS
Ronnel		KS
Simazine		KS
Terbufos		KS
Tetrachlorvinphos (Stirophos, Gardona) Mixed	isomers	KS

Method EPA 9012A

EPA Number: IN00043	Scope of Accreditation for Certification Number:	E-10177	Page 17 of 26
Pace Analytical Services, Inc - India	napolis		Primary AB
Program/Matrix: RCRA (Non Potabl	e Water)		
Amenable cyanide			KS
Cyanide			KS
Method EPA 9038			
Sulfate			KS
Method EPA 9056A			
Bromide			KS
Chloride			KS
Fluoride			KS
Iodide			KS
Nitrate			KS
Nitrite			KS
Sulfate			KS
Method EPA 9066			
Total phenolics			KS
Method EPA 9095B			
Paint Filter Test			KS
Method EPA RSK-175 (GC/FID)			
Ethane			KS
Ethene			KS
Methane			KS

EPA Number: IN00043	Scope of Accreditation for Certification Number:	E-10177	Page 18 of 26
Pace Analytical Services, Inc - India	napolis		Primary AB
Program/Matrix: RCRA (Solid & Ha	zardous Material)		
Method EPA 1010A			
Ignitability			KS
Method EPA 1311			
Toxicity Characteristic Leaching P.	rocedure (TCLP)		KS
Method EPA 1312			
Synthetic Precipitation Leaching P	rocadura (SDI D)		KS
	iocediae (SFLF)		12.5
Method EPA 6010B Aluminum			KS
Antimony			KS
Arsenic			KS
Barium			KS
Beryllium			KS
Boron			KS
Cadmium			KS
Calcium			KS
Chromium			KS
Cobalt			KS
Copper			KS
Iron			KS
Lead			KS
Magnesium			KS
Manganese			KS
Molybdenum			KS
Nickel			KS
Potassium			KS
Selenium			KS
Silver			KS
Sodium			KS
Strontium			KS
Thallium Tin			KS KS
Titanium			KS
Vanadium			KS
Zinc			KS
Method EPA 6020			14.5
Aluminum			KS
			KS
Antimony Arsenic			KS
Barium			KS
Beryllium			KS
Cadmium			KS
Chromium			KS
Cobalt			KS
Copper			KS
Lead			KS
Manganese			KS
Kansas Department of Selection	Kansas Department of Health and Environment Kansas Health Environmental Laboratories 6810 SE Dwight Street, Topeka, KS 66620		TNI TNI

Page 19 of 26 EPA Number: IN00043 Scope of Accreditation for Certification Number: E-10177 Pace Analytical Services, Inc - Indianapolis Primary AB Program/Matrix: RCRA (Solid & Hazardous Material) Nickel KS Selenium KS Silver KS Thallium KS Vanadium KS KS Zinc Method EPA 7196A Chromium VI KS Method EPA 7470A Mercury KS Method EPA 7471A Mercury KS Method EPA 8015D Diesel range organics (DRO) KS KS Ethylene glycol KS Gasoline range organics (GRO) KS Isobutyl alcohol (2-Methyl-1-propanol) KS Isopropyl alcohol (2-Propanol, Isopropanol) KS Methanol KS n-Butyl alcohol (1-Butanol, n-Butanol) KS n-Propanol (1-Propanol) KS Propylene glycol KS Method EPA 8081B 4.4'-DDD KS 4,4'-DDE KS 4,4'-DDT KS Aldrin KS alpha-BHC (alpha-Hexachlorocyclohexane) KS alpha-Chlordane, cis-Chlordane KS beta-BHC (beta-Hexachlorocyclohexane) KS Chlordane (tech.)(N.O.S.) KS delta-BHC KS Dieldrin KS Endosulfan I KS Endosulfan II KS Endosulfan sulfate KS Endrin KS Endrin aldehyde KS Endrin ketone KS gamma-BHC (Lindane, gamma-HexachlorocyclohexanE) KS gamma-Chlordane KS Heptachlor KS Heptachlor epoxide KS Methoxychlor KS Toxaphene (Chlorinated camphene) Kansas Department of Health and Environment Kansas Health Environmental Laboratories 6810 SE Dwight Street, Topeka, KS 66620 **Sansas**

Page 20 of 26 EPA Number: IN00043 Scope of Accreditation for Certification Number: E-10177 Pace Analytical Services, Inc - Indianapolis Primary AB Program/Matrix: RCRA (Solid & Hazardous Material) Method EPA 8082A Aroclor-1016 (PCB-1016) KS Aroclor-1221 (PCB-1221) KS Aroclor-1232 (PCB-1232) KS Aroclor-1242 (PCB-1242) KS Aroclor-1248 (PCB-1248) KS Aroclor-1254 (PCB-1254) KS Aroclor-1260 (PCB-1260) KS Method EPA 8141B Atrazine KS Azinphos-methyl (Guthion) KS Chlorpyrifos KS KS Chlorpyrifos-methyl Demeton-o KS KS Demeton-s KS Diazinon Dichlorovos (DDVP, Dichlorvos) KS Dimethoate KS Disulfoton KS Famphur KS Malathion KS Merphos KS Methyl parathion (Parathion, methyl) KS Naled KS Parathion, ethyl KS Phorate KS Ronnel KS Simazine KS Terbufos KS Tetrachlorvinphos (Stirophos, Gardona) E-isomer KS Method EPA 8151A 2,4,5-T KS 2,4-D KS 2,4-DB KS 3,5-Dichlorobenzoic acid KS Acifluorfen KS Bentazon KS Dalapon KS DCPA di acid degradate KS KS Dichloroprop (Dichlorprop) KS Dinoseb (2-sec-butyl-4,6-dinitrophenol, DNBP) KS MCPA KS MCPP KS KS Pentachlorophenol Picloram KS

EPA Number: IN00043 Scope of Accreditation for Certification Number: E-10177 Page 21 of 26

Pace Analytical Services, Inc - Indianapolis	Primary AB
Program/Matrix: RCRA (Solid & Hazardous Material)	
Silvex (2,4,5-TP)	KS
Method EPA 8260C	
1.1.1.2-Tetrachloroethane	KS
1,1,1-Trichloroethane	KS
1,1,2,2-Tetrachloroethane	KS
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	KS
1,1,2-Trichloroethane	KS
1,1-Dichloroethane	KS
1,1-Dichloroethylene	KS
1,1-Dichloropropene	KS
1,2,3-Trichlorobenzene	KS
1,2,3-Trichloropropane	KS
1,2,4-Trichlorobenzene	KS
1,2,4-Trimethylbenzene	KS
1,2-Dibromo-3-chloropropane (DBCP)	KS
1,2-Dibromoethane (EDB, Ethylene dibromide)	KS
1,2-Dichlorobenzene (o-Dichlorobenzene)	KS
1,2-Dichloroethane (Ethylene dichloride)	KS
1,2-Dichloropropane	KS
1,3,5-Trichlorobenzene	KS
1,3,5-Trimethylbenzene	KS
1,3-Dichlorobenzene	KS
1,3-Dichloropropane	KS
1,4-Dichlorobenzene	KS
1,4-Dioxane (1,4- Diethyleneoxide)	KS
1-Methylnaphthalene	KS
2,2-Dichloropropane	KS
2-Butanone (Methyl ethyl ketone, MEK)	KS
2-Chloroethyl vinyl ether	KS
2-Chlorotoluene	KS
2-Hexanone	KS
2-Methylnaphthalene	KS
4-Chlorotoluene	KS
4-Isopropyltoluene (p-Cymene,p-Isopropyltoluene)	KS
4-Methyl-2-pentanone (MIBK) Acetone	KS
	KS
Acetonitrile	KS KS
Acrolein (Propenal) Acrylonitrile	KS
Allyl chloride (3-Chloropropene)	KS
Benzene	KS
Bromobenzene	KS
Bromochloromethane	KS
Bromodichloromethane	KS
Bromoform	KS
Carbon disulfide	KS
Carva distance	200

EPA Number: IN00043 Scope of Accreditation for Certification Number: E-10177 Page 22 of 26

Pace Analytical Services, Inc - Indianapolis	Primary AB
Program/Matrix: RCRA (Solid & Hazardous Material)	
Carbon tetrachloride	KS
Chlorobenzene	KS
Chlorodibromomethane	KS
Chloroethane (Ethyl chloride)	KS
Chloroform	KS
cis-1,2-Dichloroethylene	KS
cis-1,3-Dichloropropene	KS
Dibromomethane (Methylene bromide)	KS
Dichlorodifluoromethane (Freon-12)	KS
Diethyl ether	KS
Ethyl acetate	KS
Ethyl methacrylate	KS
Ethylbenzene	KS
Hexachlorobutadiene	KS
Iodomethane (Methyl iodide)	KS
Isopropylbenzene	KS
Methacrylonitrile	KS
Methyl bromide (Bromomethane)	KS
Methyl chloride (Chloromethane)	KS
Methyl methacrylate	KS
Methyl tert-butyl ether (MTBE)	KS
Methylene chloride (Dichloromethane)	KS
m-Xylene	KS
Naphthalene	KS
n-Butyl alcohol (1-Butanol, n-Butanol)	KS
n-Butylbenzene	KS
n-Hexane	KS
n-Propylbenzene	KS
o-Xylene	KS
Propionitrile (Ethyl cyanide)	KS
p-Xylene	KS
sec-Butylbenzene	KS
Styrene	KS
tert-Butyl alcohol	KS
tert-Butylbenzene	KS
Tetrachloroethylene (Perchloroethylene)	KS
Toluene	KS
trans-1,2-Dichloroethylene	KS
trans-1,3-Dichloropropylene	KS
trans-1,4-Dichloro-2-butene	KS
Trichloroethene (Trichloroethylene)	KS
Trichlorofluoromethane (Fluorotrichloromethane, Freon 11)	KS
Vinyl acetate	KS
Vinyl chloride	KS
Xylene (total)	KS
16-8-4 ED1 00500	

EPA Number: IN00043 Scope of Accreditation for Certification Number: E-10177 Page 23 of 26

EFA Number: 1/100045 Scope of Accreditation for Certification Number: E-101//	Fage 25 01 20
Pace Analytical Services, Inc - Indianapolis	Primary AB
Program/Matrix: RCRA (Solid & Hazardous Material)	
1,2,4,5-Tetrachlorobenzene	KS
1,2,4-Trichlorobenzene	KS
1,2-Dichlorobenzene (o-Dichlorobenzene)	KS
1,2-Diphenylhydrazine	KS
1,3-Dichlorobenzene	KS
1,3-Dinitrobenzene (1,3-DNB)	KS
1,4-Dichlorobenzene	KS
1,4-Naphthoquinone	KS
1,4-Phenylenediamine	KS
1-Methylnaphthalene	KS
1-Naphthylamine	KS
2,2'-Oxybis(1-chloropropane), bis(2-Chloro-1-methylethyl)ether	KS
2,3,4,6-Tetrachlorophenol	KS
2,4,5-Trichlorophenol	KS
2,4,6-Trichlorophenol	KS
2,4-Dichlorophenol	KS
2,4-Dimethylphenol	KS
2,4-Dinitrophenol	KS
2,4-Dinitrotoluene (2,4-DNT)	KS
2,6-Dichlorophenol	KS
2,6-Dinitrotoluene (2,6-DNT)	KS
2-Acetylaminofluorene	KS
2-Chloronaphthalene	KS
2-Chlorophenol	KS
2-Methyl-4,6-dinitrophenol (4,6-Dinitro-2-methylphenol)	KS
2-Methylaniline (o-Toluidine)	KS
2-Methylnaphthalene	KS
2-Methylphenol (o-Cresol)	KS
2-Naphthylamine	KS
2-Nitroaniline	KS
2-Nitrophenol	KS
2-Picoline (2-Methylpyridine)	KS
3,3'-Dichlorobenzidine	KS
3,3'-Dimethylbenzidine	KS
3-Methylcholanthrene	KS
3-Methylphenol (m-Cresol)	KS
3-Nitroaniline	KS
4-Aminobiphenyl	KS
4-Bromophenyl phenyl ether	KS
4-Chloro-3-methylphenol	KS
4-Chloroaniline	KS
4-Chlorophenyl phenylether	KS
4-Dimethyl aminoazobenzene	KS
4-Methylphenol (p-Cresol)	KS
4-Nitroaniline	KS
4-Nitrophenol	KS
4-Nitroquinoline 1-oxide	KS
	ap sicoga
	and the same of th

A Number: IN00043	Scope of Accreditation for Certification Number:	E-10177	Page 24 of
e Analytical Services, Inc - I	ndianapolis	Pr	imary AB
gram/Matrix: RCRA (Solid &	& Hazardous Material)		
5-Nitro-o-toluidine		KS	5
7,12-Dimethylbenz(a) anthrac	cene	KS	6
a-a-Dimethylphenethylamine		KS	5
Acenaphthene		KS	5
Acenaphthylene		KS	5
Acetophenone		KS	5
Aniline		KS	5
Anthracene		KS	5
Aramite		KS	6
Benzidine		KS	5
Benzo(a)anthracene		KS	
Вепло(а)рутепе		KS	6
Benzo(b)fluoranthene		KS	5
Benzo(g,h,i)perylene		KS	5
Benzo(k)fluoranthene		KS	6
Benzoic acid		KS	6
Benzyl alcohol		KS	5
bis(2-Chloroethoxy)methane		KS	6
bis(2-Chloroethyl) ether		KS	5
Butyl benzyl phthalate		KS	5
Carbazole		KS	6
Chlorobenzilate		KS	6
Chrysene		KS	6
Di(2-ethylhexyl) phthalate (1	bis(2-Ethylhexyl)phthalate, DEHP)	KS	6
Diallate		KS	5
Dibenz(a,h) anthracene		KS	5
Dibenzofuran		KS	5
Diethyl phthalate		KS	5
Dimethoate		KS	5
Dimethyl phthalate		KS	5
Di-n-butyl phthalate		KS	5
Di-n-octyl phthalate		KS	5
Diphenylamine		KS	5
Disulfoton		KS	6
Ethyl methanesulfonate		KS	5
Famphur		KS	5
Fluoranthene		KS	6
Fluorene		KS	6
Hexachlorobenzene		KS	6
Hexachlorobutadiene		KS	6
Hexachlorocyclopentadiene		KS	6
Hexachloroethane		KS	5
Hexachlorophene		KS	5
Hexachloropropene		KS	5
Indeno(1,2,3-cd) pyrene		KS	6
Isodrin		KS	5
Isophorone		KS	
-	Kansas Department of Health and Environment		SUND SECT
Cansas	Kansas Health Environmental Laboratories		
opartment of Houlth and Environment	6810 SE Dwight Street, Topeka, KS 66620		S. TI

EPA Number: IN00043 Scope of Accreditation for Certification Number: E-10177 Page 25 of 26

EFA Number: 1800045 Scope of Accreditation for Certification Number: E-101//	1464270120
Pace Analytical Services, Inc - Indianapolis	Primary AB
Program/Matrix: RCRA (Solid & Hazardous Material)	
Isosafrole	KS
Kepone	KS
Methapyrilene	KS
Methyl methanesulfonate	KS
Methyl parathion (Parathion, methyl)	KS
Naphthalene	KS
Nitrobenzene	KS
n-Nitrosodiethylamine	KS
n-Nitrosodimethylamine	KS
n-Nitroso-di-n-butylamine	KS
n-Nitrosodi-n-propylamine	KS
n-Nitrosodiphenylamine	KS
n-Nitrosomethylethylamine	KS
n-Nitrosomorpholine	KS
n-Nitrosopiperidine	KS
n-Nitrosopyrrolidine	KS
o,o,o-Triethyl phosphorothioate	KS
Parathion, ethyl	KS
Pentachlorobenzene	KS
Pentachloronitrobenzene	KS
Pentachlorophenol	KS
Phenacetin	KS
Phenanthrene	KS
Phenol	KS
Phorate	KS
Pronamide (Kerb)	KS
Ругепе	KS
Pyridine	KS
Safrole	KS
Sulfotep (Tetraethyl dithiopyrophosphate)	KS
Thionazin (Zinophos)	KS
Method EPA 8270C SIM	
1-Methylnaphthalene	KS
2-Methylnaphthalene	KS
Acenaphthene	KS
Acenaphthylene	KS
Anthracene	KS
Atrazine	KS
Azinphos-methyl (Guthion)	KS
Benzo(a)anthracene	KS
Benzo(a)pyrene	KS
Benzo(b)fluoranthene	KS
Benzo(g,h,i)perylene	KS
Benzo(k)fluoranthene	KS
Chlorpyrifos	KS
Chlorpyrifos-methyl	KS

EPA Number: IN00043	Scope of Accreditation for Certification Number:	E-10177	Page 26 of 26
Pace Analytical Services, Inc - Indian	napolis		Primary AB
Program/Matrix: RCRA (Solid & Ha;	zardous Material)		
Chrysene			KS
Demeton-o			KS
Demeton-s			KS
Diazinon			KS
Dibenz(a,h) anthracene			KS
Dichlorovos (DDVP, Dichlorvos)			KS
Dimethoate			KS
Disulfoton			KS
Famphur			KS
Fluoranthene			KS
Fluorene			KS
Indeno(1,2,3-cd) pyrene			KS
Malathion			KS
Merphos			KS
Methyl parathion (Parathion, methy	vI)		KS
Naled			KS
Naphthalene			KS
Parathion, ethyl			KS
Phenanthrene			KS
Phorate			KS
Pyrene			KS
Ronnel			KS
Simazine			KS
Terbufos			KS
Tetrachlorvinphos (Stirophos, Gard	lona) Mixed isomers		KS
Method EPA 9012A			
Amenable cyanide			KS
Cyanide			KS
Method EPA 9045C			
pH			KS
Method EPA 9066			
Total phenolics			KS
•			R.S
Method EPA 9095B			
Paint Filter Test	T 1 40 44 19 4		KS
	End of Scope of Accreditation		

