Resource Accreditation Reform

IRP Contemporary Issues Technical Conference June 6, 2024

Executive Summary

- The changing resource fleet presents a paradigm shift *from* predictable peak risk periods with high resource availability *to* dynamic times of risk with corresponding low resource availability
- While accreditation enhancements approved in 2022 are helpful, further coordinated redesign of accreditation methodology is necessary
- Accreditation reforms under development advance a more wholistic solution for both thermal and non-thermal resources
- MISO made a Tariff filing for accreditation reforms in March 2024 (FERC Docket #: ER24-1638-000) with implementation in Planning Year 2028-2029

MISO's accreditation reform proposal has been developed based on robust stakeholder discussions over the last two years

2022	Q1 2023	Q2 2023	Q3 2023	Nov 2023	Jan 2024	Feb. & Mar. 2024	
 v Planning and evaluation stages ✓ Identified goals and core principles ✓ Initiated 	Shared Workplan Began evaluation of DLOL for all Resources Proposed transition plan	 ✓ Shared Wind and Solar class values and DLOL Resource Classes ✓ Published Draft Design White Paper 	 Shared DLOL Coal and Solar example calculation sheets Continued PRMR discussion Stakeholder proposals Shared Seasonal DLOL results by Resource Class Shared Resource level DLOL results with respective MPs 	 Responded to stakeholder proposed ideas Shared DLOL results for current year and Future 2A with clarifications on the design and modeling Published revised White Paper 	 ✓ Share final design on Base vs Expanded Hours and Local Clearing Requirements ✓ Post draft Tariff language for stakeholder 	 Post Final Tariff Language Tariff Filing with FERC MISO made a Tariff filing in 	
					stakeholder feedback ✓ Shared Seasonal DLOL results by Resource Class	March 2024, with Tariff effective date of Sep 1, 2024	

MISO's proposed accreditation method is the next step in the evolution of the Resource Availability and Need (RAN) initiative to advance the needs identified in MISO's Reliability Imperative

Reliability Imperative Living Report

MISO has done extensive outreach to educate stakeholders on its proposed accreditation reforms

15+ meetings with Market Participants

10+ meetings with OMS and State commission staff

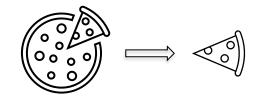
10+ meetings with IMM

Proposed Accreditation Method

MISO's proposed methodology for accrediting all resources (except Load Modifying Resources) measures a resource's availability when reliability risk is the greatest

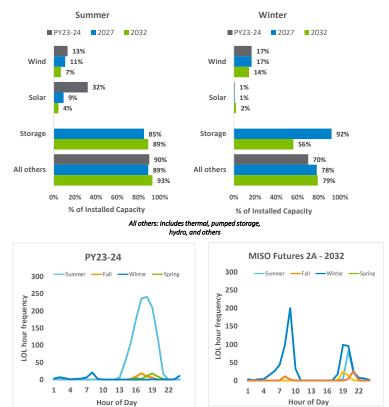
> Class-Level (Prospective/Probabilistic)

Direct-LOL Method Availability within LOLE model during Critical Hours Resource-Level (Retrospective/Deterministic)


Schedule 53A Method

Based on actual performance with historical <u>high-risk hours</u> weighted more heavily

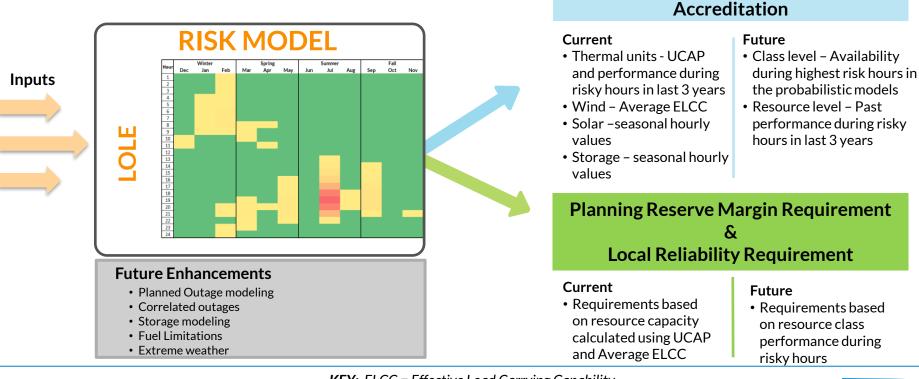
Step 1: Determining Class-level accreditation

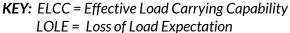

Step 2: Allocating Class-level accreditation to each Resource in the Resource Class

As the portfolio transitions, loss of load risks shifts, requiring resource accreditation to evolve based on reliability contribution

Risk hours are shifting from summer peak to winter.

Accreditation based on reliability contributions is the right direction.

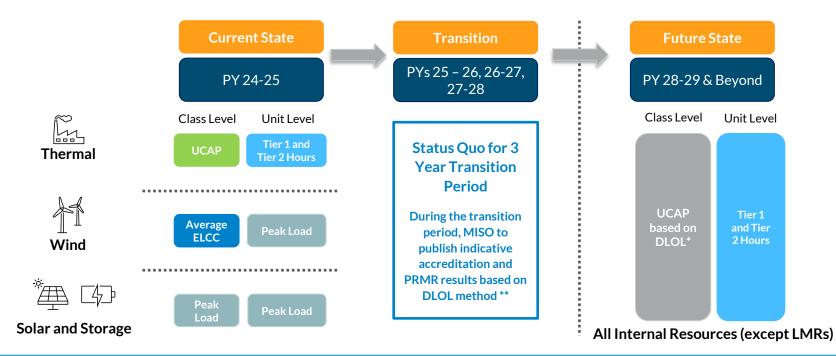



Solar accreditation falls off with higher levels of penetration because of risk hours being shifted to later in the evening.

Requires close coordination with Members & State Regulators as they plan for their evolving fleets.

The planned reforms better leverage the risk model and aligns resource accreditation calculations with requirements calculations. Future modeling improvements will naturally drive more efficiency in the outcomes

MISO


The proposed DLOL approach accurately accounts for reliability contributions of all resource classes in the probabilistic models. Accreditation & requirements change similarly under the DLOL paradigm

PY23-24	Summer		Fall		Winter		Spring	
Resource Class	Current	Proposed	Current	Proposed	Current	Proposed	Current	Proposed
Gas	90%	88%	84%	88%	79%	66%	84%	69%
Combined Cycle	91%	90%	94%	89%	90%	74%	92%	75%
Coal	92%	91%	91%	88%	90%	73%	89%	74%
Hydro	96%	96%	94%	96%	93%	92%	97%	88%
Nuclear	95%	90%	96%	85%	95%	86%	92%	80%
Pumped Storage	99%	98%	91%	98%	94%	50%	89%	67%
Storage	95%	94%	95%	93%	95%	91%	95%	95%
Solar	45%	36%	25%	31%	6%	2%	15%	18%
Wind	18%	11%	23%	15%	40%	16%	23%	16%
Run-of-River	100%	100%	100%	100%	100%	100%	100%	100%

PY 23/24 - PRMR	Summer		Fall		Winter		Spring		
Resource Class	Current	Proposed	Current	Proposed	Current	Proposed	Current	Proposed	Formula Key
Gas	30,251	29,541	28,595	29,745	28,582	23,605	28,962	23,657	[A]
Combined Cycle	27,558	27,326	28,635	27,015	28,552	23,650	27,929	22,997	[B]
Coal	40,545	39,955	39,888	38,812	39,914	32,539	39,280	32,641	[C]
Hydro (includes diversity contracts)	2,120	2,122	2,104	2,118	926	916	1,350	1,287	[D]
Nuclear	11,410	10,850	11,522	10,304	11,627	10,493	11,063	9,640	[E]
Pumped Storage	2,530	2,523	2,345	2,504	2,299	1,216	2,359	1,763	[F]
Storage	28	28	28	28	54	52	55	55	[G]
Solar	2,151	1,700	1,603	1,937	698	188	1,824	2,221	[H]
Wind	4,639	2,731	5,993	3,859	11,389	4,477	6,500	4,601	[1]
Run-of-River	966	966	966	966	966	966	966	966	[J]
BTMG	4,196	4,196	4,218	4,218	4,163	4,163	4,240	4,240	[K]
Demand Response	7,397	7,397	7,041	7,041	5,388	5,388	6,280	6,280	[L]
Firm External Support	1,707	1,707	1,714	1,714	1,857	1,857	1,778	1,778	[M]
Adj. {1d in 10yr}	(4,000)	(4,000)	(10,000)	(10,000)	(6,200)	(6,200)	(12,750)	(12,750)	[N]
PRMR	131,498	127,042	124,652	120,261	130,215	103,310	119,836	99,376	[O]= sum of [A] through [N]

A three-year transition allows time for stakeholders to better understand and plan for the accreditation and reserve margin calculations based on DLOL approach

*Definition of Unforced Capacity (UCAP) is changing with the Accreditation Filing and will account for resource's availability in the LOLE analysis that will be computed based on DLOL method.

Contact Info

Eric Rodriguez erodriguez@misoenergy.org